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ABSTRACT

Motivated by the need for accurate frequency estimation in
power systems, a novel algorithm for estimating the fun-
damental frequency of both balanced and unbalanced three-
phase power systems, which is robust to noise and distortions,
is developed. This is achieved through the use of quaternions
in order to provide a unified framework for joint modeling
of voltage measurements from all the phases of a three-
phase system. Next, the recently introduced HR-calculus
is employed to derive a state space estimator based on the
quaternion extended Kalman filter (QEKF). The proposed al-
gorithm is validated over a variety of case studies using both
synthetic and real-world data.

Index Terms— Three-phase power systems, frequency
estimation, quaternion state space modeling, quaternion-
valued signal processing, quaternion Kalman filtering.

1. INTRODUCTION

Deviations from the nominal system frequency adversely
affect the components of the power grid [1], such as compen-
sators and loads, resulting in harmful operating conditions
that can propagate throughout the network. Frequency sta-
bility is therefore one of the most important factors in power
quality [2]. Accurate frequency tracking is a prerequisite to
ensuring frequency stability of the grid; furthermore, real-
time frequency tracking reveals essential information about
the dynamics of the power grid, such as power generation-
consumption mismatch. Future envisioned smart grid tech-
nologies will incorporate distributed power generation based
on renewable energy sources, where the wide-area grid can
be divided into a number of smaller self-contained sections
named micro-grids, with some micro-grids disconnecting
from the wide-area grid for prolonged lengths of time, re-
ferred to as islanding. Perfect synchrony is needed to dy-
namically manage these micro-grids, which requires robust
frequency estimators [3]-[5].

The importance of frequency estimation in power grids
has motivated the development of a variety of algorithms ded-
icated to this cause. Early approaches were based on the
use of the voltage measurements from a single phase [6]-[7].
Although all phases of a three-phase system have the same

frequency, approaches based on a single phase cannot fully
characterize three-phase power systems and can lead to non-
unique solutions [8]; for instance, when one or two of the
phases that are selected for frequency estimation experience
a sudden reduction in the voltage or a short circuit, referred
to as voltages sags [9]. To deal with all three phases simulta-
neously, the Clarke transform maps the measured three-phase
voltages onto the complex domain [10]-[13]; however, this
approach is optimal only when the three-phase system is bal-
anced [3]-[5].

Quaternions provide a natural framework for processing
three- and four-dimensional signals and are gaining increas-
ing popularity in engineering applications [14]-[19]. One ma-
jor development that has lead to the resurgence of quaternions
in signal processing is the introduction of the HR-calculus
[20] which allows the derivatives of both analytic and non-
analytic quaternion-valued functions to be calculated directly
in the quaternion domain. Based on the HR-calculus, a class
of novel quaternion Kalman filtering algorithms, including
the strictly linear QEKF, have been presented in [21].

In this work, a novel frequency estimation algorithm suit-
able for both balanced and unbalanced three-phase power sys-
tems is developed. This is achieved by exploiting the multi-
dimensional nature of quaternions to make possible the full
characterization of three-phase power systems in the three-
dimensional domain, where they naturally reside. This both
eliminates the need for the Clarke transform and makes pos-
sible the use of the QEKF to estimate the frequency of the
system. The proposed approach is verified over a range of
simulations in practical power system scenarios using both
synthetic and real-world data.

2. BACKGROUND

The instantaneous voltages of each phase in a three-phase
power system are given by [22]

va,n =Va,nsin (2πf∆Tn+ φa,n)

vb,n =Vb,nsin
(

2πf∆Tn+ φb,n +
2π

3

)
vc,n =Vc,nsin

(
2πf∆Tn+ φc,n +

4π

3

) (1)
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where Va,n, Vb,n, and Vc,n are the instantaneous amplitudes,
φa,n, φb,n, and φc,n represent the instantaneous phases, and
f is the system frequency, while ∆T = 1/fs is the sampling
interval with fs denoting the sampling frequency. The Clarke
transform, given by [22] v0,n

vα,n
vβ,n

 =

√
2

3


√

2
2
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2

2

√
2

2
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2


 va,n
vb,n
vc,n

 (2)

maps the three-phase voltages onto a new domain where they
are represented by the complex number vn = vα,n + ivβ,n,
while v0,n is ignored in most practical applications. In a bal-
anced three-phase system, Vn = Va,n = Vb,n = Vc,n and
φn = φa,n = φb,n = φc,n, resulting in v0,n = 0 and

vn =
√

3
2Vne

i(2πf∆Tn+φn), which can be expressed by the
first order regression

vn = ei2π∆T vn−1 (3)

where we refer to ei2π∆T as the phase incrementing element.
The frequency of the system can then be estimated using stan-
dard linear complex Kalman filters employing the state space
model given in Algorithm 1, where xn is the phase incre-
menting element, un the state evolution noise, and wn the
observation noise [5].

Algorithm 1 Complex-valued state space model (C-SS)

State evolution equation:
[
xn+1

vn+1

]
=

[
xn
xnvn

]
+ un

Observation equation: vn =
[
0 1

] [xn
vn

]
+ wn

Estimate of frequency: f̂n = 1
2π∆T = (ln (xn))

This approach is proven to be optimal when the three-
phase system is balanced. When the system is unbalanced,
v0,n 6= 0 and contains information regarding the system fre-
quency; however, due to the two-dimensional nature of com-
plex numbers, it is excluded from the analysis. Moreover, for
unbalanced three-phase systems

vn = V1,ne
i(2πf∆Tn) + V2,ne

−i(2πf∆Tn)

where V1,n, V2,n ∈ C, so that the linear fist order regression
in (3) is no-longer adequate to express vn. To this end, we
employ quaternions in order to model the voltages of thee-
phase power systems directly in the three-dimensional space
without the use of the Clarke transform.

Quaternions are an associative, non-commutative, divi-
sion algebra denoted by H. A quaternion variable q ∈ H
consists of a real part <(q) and a three-dimensional imag-
inary part or pure quaternion, =(q), which comprises three

imaginary components =i(q), =j(q), and =k(q); therefore, q
can be expressed as

q = <(q) + =(q) =<(q) + =i(q) + =j(q) + =k(g)

=qr + iqi + jqj + kqk

where qr, qi, qj , qk ∈ R, while i, j, and k are imaginary units
obeying the following product rules

ij = k, jk = i, ki = j,
i2 = j2 = k2 = ijk = −1.

The involution of q ∈ H around η ∈ H is defined as
qη , ηqη−1 and can be seen as the quaternion equivalent
of the complex conjugate, as it can be used to express the
real-valued components of a quaternion number, q ∈ H, as
[20]-[21],[23]

qr =
1

4

(
q + qi + qj + qk

)
qi =

1

4i

(
q + qi − qj − qk

)
(4)

qj =
1

4j

(
q − qi + qj − qk

)
qk =

1

4k

(
q − qi − qj + qk

)
.

The quaternion conjugate is also an involution and is defined
as

q∗ = <(q)−=(q) =
1

2

(
qi + qj + qk − q

)
(5)

while the norm of q ∈ H is given by

|q| =
√
qq∗ =

√
q2
r + q2

i + q2
j + q2

k.

The expressions in (4) establish a relation between the aug-
mented quaternion variable, [q,qi,qj ,qk]T ∈ H4, and the
real-valued vector [qr,qi,qj ,qk]T ∈ R4, which has been
instrumental in the development of the quaternion augmented
statistics [24]-[25] and the HR-calculus [20]. The augmented
quaternion statistics in conjunction with the HR-calculus
have led to the development of a class of quaternion Kalman
filters including the strictly linear QEKF [21] that operates
akin to its complex-valued counterpart, with the difference
that the Jacobian of the state evolution function is calculated
by the HR-calculus. For example, ∂q

∗

∂q = −0.5, which is a
consequence of (5) and is in contrast with the results in the
complex domain.

A quaternion q ∈ H can alternatively be expressed by its
polar presentation given by [16]

q = |q|eξθ = |q|
(
cos(θ) + ξsin(θ)

)
where

ξ =
=(q)

|=(q)|
and θ = atan

(
|=(q)|
<(q)

)
.

Moreover, it is straightforward to prove that the sin(·) and
cos(·) functions can be expressed as

sin(θ) =
1

2ξ

(
eξθ − e−ξθ

)
, cos(θ) =

1

2

(
eξθ + e−ξθ

)
(6)

where ξ2 = −1.
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3. QUATERNION FREQUENCY ESTIMATOR

The three phase voltages in (1) are now combined together to
generate the pure quaternion signal

qn = iva,n + jvb,n + kvc,n (7)

where all the elements of qn have the same frequency; there-
fore, analytical geometry dictates that qn traces an ellipse in a
subspace (one plane) of the three-dimensional imaginary sub-
space of H [26]. This is shown in Figure 1, where the system
voltages of a balanced and an unbalanced three-phase system
are presented.

Without loss of generality and in order to simplify our
analysis we define a new set of imaginary units, {ζ, ζ ′, ζ ′′}
such that

ζζ ′ = ζ ′′, ζ ′ζ ′′ = ζ, ζ ′′ζ = ζ ′. (8)

The ζ and ζ ′ imaginary units are designed to reside in the
same plane as qn, which results in ζ ′′ being normal to this
plane. An arbitrary ellipse in the ζ − ζ ′ plane can then be
expressed as

qn = ζAnsin(2πf∆Tn+φζ,n)+ζ ′Bnsin(2πf∆Tn+φζ′,n)

where An, Bn ∈ R, are instantaneous amplitudes and
φζ,n, φζ′,n are instantaneous phases. The expression above
can be rearranged using (8) to give

qn =
(
Ansin(2πf∆Tn+ φζ,n)

+ ζ ′′Bnsin(2πf∆Tn+ φζ′,n)
)
ζ.

(9)

Given that ζ ′′2 = −1, upon replacing the sin(·) and cos(·)
functions with their polar representations from (6), the ex-
pression in (9) yields

qn =
( An

2ζ ′′

)(
eζ
′′(2πf∆Tn+φζ,n) − e−ζ

′′(2πf∆Tn+φζ,n)
)
ζ

+
(Bn

2

)(
eζ
′′(2πf∆Tn+φζ′,n) − e−ζ

′′(2πf∆Tn+φζ′,n)
)
ζ.

Factoring out the terms eζ
′′(2π f∆Tn) and e−ζ

′′2πf∆Tn), the
expression above can be rearranged to give

qn =
(Aneζ′′(φζ,n)

2ζ ′′
+
Bne

ζ′′(φζ′,n)

2

)
eζ
′′(2πf∆Tn)ζ︸ ︷︷ ︸

q+n

−
(Ane−ζ′′(φζ,n)

2ζ ′′
+
Bne

−ζ′′(φζ′,n)

2

)
e−ζ

′′(2πf∆Tn)ζ︸ ︷︷ ︸
q−n

where qn has been divided into the two counter-rotating sig-
nals q+

n and q−n , which can be expressed by the corresponding
fist order quaternion linear regressions

q+
n = eζ

′′(2πf∆T )q+
n−1 and q−n = e−ζ

′′(2πf∆T )q−n−1. (10)
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Fig. 1. Geometric view of the system voltages, qn, and the
corresponding phasor diagrams of a balanced and an unbal-
anced three-phase system: a) system voltages, b) phasor rep-
resentation of a balanced three-phase system, c) phasor rep-
resentation of an unbalanced three-phase system. Solid red
lines represent an unbalanced system, while dashed blue lines
lines represent a balanced system.

Taking into account the linear regressions in (10), where
the phase incrementing element of q+

n is the quaternion con-
jugate of the phase incrementing element of q−n , a state
space model for qn is proposed in Algorithm 2, where
ϕn = eζ

′′2πf∆T , gn is the state evolution noise, and rn
is the observation noise. Note that Algorithm 2 can be imple-
mented using the strictly linear QEKF presented in [21].

Algorithm 2 Quaternion-valued state space model (Q-SS)

State evolution equation:

ϕn+1

q+
n+1

q−n+1

 =

 ϕn
ϕnq

+
n

ϕ∗nq
−
n

+ gn

Observation equation: qn =
[
0 1 1

] ϕnq+
n

q−n

+ rn

Estimate of frequency: f̂n = 1
2π∆T = (ln (ϕn))

Remark 1. For a balanced three-phase system it can be shown
that

qn =
(
i+ jcos

(2π

3

)
+ kcos

(4π

3

))
︸ ︷︷ ︸

√
1.5ζ

Vnsin(2πf∆Tn+ φn)

+
(
jsin

(2π

3

)
+ ksin

(4π

3

))
︸ ︷︷ ︸

√
1.5ζ′

Vncos(2πf∆Tn+ φn)

which represents a circle in the ζ−ζ ′ plane and describes only
one rotating element (q+

n or q−n , dependent on the three-phase
being positive or negative sequence); therefore q+

n and q−n can
be used to indicate faults in the system.
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4. SIMULATIONS

The performance of the proposed frequency estimator was
validated over a range of practical power grid scenarios. In all
the simulations, the sampling frequency was fs = 1 kHz, the
system frequency was f = 50 Hz, the system voltages were
normalized, and the voltage measurements were assumed to
be corrupted by white Gaussian noise with signal-to-noise ra-
tio (SNR) of 50dB.

In the first set of simulations, a system operating under
balanced conditions suddenly suffered a voltage sag charac-
terized by a 50% reduction in the amplitude of va,n and a 20
degree shift in the phases of vb,n and vc,n; furthermore, the
frequency of the system experienced a step increase of 2 Hz.
The voltages of the three-phase system and the estimates ob-
tained by the Q-SS and C-SS algorithms are shown in Fig-
ure 2. Notice that the proposed Q-SS algorithm accurately es-
timates the frequency of the system under both balanced and
unbalanced operating conditions, while under unbalanced op-
erating conditions the C-SS algorithm experienced oscillatory
errors at twice the system frequency.
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Fig. 2. Frequency estimation under balanced and unbalanced
operating conditions: a) system voltages, b) estimates of the
system frequency.

In the second set of simulations, the unbalanced three-
phase system in the first simulation experienced a frequency
rise (cf. decay) at the rate of 5 Hz/s, a case encountered when
power generation is higher (cf. lower) than power consump-
tion. The estimates of the system frequency are shown in Fig-
ure 3. Observe that the proposed Q-SS algorithm was able to
track the frequency of the system with a very small steady-
state error; however, its complex-valued counterpart, the C-
SS, suffered from large oscillatory errors.

In the third set of simulations, real-world data recoded at
a 110/20/10 kV transformer station were considered. The
recording showed the “phase-to-ground” voltages of the sys-
tem, which suffered a fault 5 seconds into the recording, that
only lasted for 80 milliseconds. The convergence and steady-
state behaviors of the C-SS and Q-SS algorithms are com-
pared in Figure 4, where it is noticeable that although the two
algorithms converge at the same point in time, the steady-
state behavior of the quaternion-valued Q-SS algorithm is far
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Fig. 3. Frequency estimation for a three-phase system expe-
riencing a frequency rise or decay.

better than that of the complex-valued C-SS algorithm. The
behavior of the Q-SS and C-SS algorithms during the fault
are shown in Figure 5, where the Q-SS algorithm shows ex-
cellent ability to track the system frequency, while the C-SS
algorithm became unreliable and lost track of the frequency
of the system.
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Fig. 4. Convergence and steady-state behavior of the pro-
posed frequency estimation algorithm: a) convergence behav-
ior, b) steady-state behavior.
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Fig. 5. Behavior of the proposed algorithm during a real-
world voltage sag: a) system voltages, b) estimates of the
system frequency.

5. CONCLUSION

A novel frequency estimation algorithm for three-phase
power systems has been developed based on the extended
quaternion Kalman filter (QEKF) and the HR-calculus. The
proposed algorithm has been shown to fully characterize both
balanced and unbalanced three-phase power systems. The
performance of the proposed algorithm has been assessed in
a number of scenarios using both synthetic and real-world
data, where it has been shown to outperform conventional
complex linear estimators.
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