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ABSTRACT

In this paper we study the estimation of changing trends in
time-series using `1 trend filtering. This method general-
izes 1D Total Variation (TV) denoising for detection of step
changes in means to detecting changes in trends, and it relies
on a convex optimization problem for which there are very
efficient numerical algorithms. It is known that TV denoising
suffers from the so-called stair-case effect, which leads to
detecting false change points. The objective of this paper is
to show that `1 trend filtering also suffers from a certain stair-
case problem. The analysis is based on an interpretation of
the dual variables of the optimization problem in the method
as integrated random walk. We discuss consistency condi-
tions for `1 trend filtering, how to monitor their fulfillment,
and how to modify the algorithm to avoid the stair-case false
detection problem.

Index Terms— `1 trend filtering, generalized lasso, TV
denoising, Fused Lasso, change point detection.

1. INTRODUCTION

We study the `1 trend filtering method given (for λ > 0) by

min
{mt}Nt=1

1

2

N∑

t=1

(yt −mt)
2 + λ

N∑

t=3

|mt − 2mt−1 +mt−2|,

(1.1)

to estimate mean-trends in a time series dataset {yt}Nt=1 gen-
erated by the non-stationary Gaussian process

yt ∼ N (mt, σ
2),

where the variance σ2 > 0 is constant. It is assumed that the
mean {mt} forms a piecewise linear sequence, i.e., a piece-
wise linear trend. One way to measure the variability of a
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sequence {xt, t = 1, . . . , N} is via its Total Variation (TV)1:

N∑

t=2

|xt − xt−1|.

This is the `1-norm of the first-difference sequence and can
be seen as a convex approximation/relaxation of counting the
number of changes. It is also directly related to measuring
sparseness using the l1-norm, as in the lasso method. Since
the trend is assumed to be piecewise linear, we consider the
second difference xt = mt − 2mt−1 + mt−2, and we im-
pose an `1 penalty on xt:

∑N
t=3 |mt − 2mt−1 +mt−2|. The

fit to the data is measured by the least squares cost function
1
2

∑N
t=1(yt − mt)

2, which is related to the Maximum Like-
lihood (ML) cost function for the normally distributed case.
The so-called `1 trend filter [2] is given by minimizing a con-
vex combination of these two cost functions, leading to (1.1).
This is a convex optimization problem with only one design
parameter, namely λ > 0. The TV cost will promote solutions
for which mt − 2mt−1 +mt−2 = 0, i.e., a piecewise linear
estimate (without jumps). As remarked in [2], this method is
related to the Hodrick-Prescott filter [3], where an `2 penalty
on the second difference sequence is imposed; however, the `1
norm is better at promoting sparsity, which translates here into
a piecewise linear sequence mt. The choice of the regular-
ization parameter λ is very important and provides a balance
between fitting the data and stressing the structure constraint.
The same idea can be used for the multivariate case, i.e., for
a vector valued stochastic process. The `1 norm can then be
replaced by a sum of norms, and is known as sum-of-norms
regularization [4]. For simplicity of presentation, however,
we will focus on the univariate case. The `1 trend filtering
method is a special case of the generalized lasso method stud-
ied in [5]. It is also related to spline approximations [6, 7].

The corresponding problem of detecting and estimating
step-changes in means that are piecewise constant using

min
m1,...,mN

1

2

N∑

t=1

(yt −mt)
2 + λ

N∑

t=2

|mt −mt−1|.

is more well studied. This method is called one-dimensional
Total Variation (TV) denoising, Fused Lasso Signal Ap-

1Another approach, for instance, is to specify the probability of a change
and then use for example multiple model estimation methods [1].
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proximator or l1 mean filtering [8, 9]. Some asymptotic
convergence properties of the fused lasso are given in [10].
In [11] it was rigorously shown that l1 mean filtering detec-
tion method fails under well defined and intuitive conditions,
namely when two consecutive changes in the mean have the
same sign (called a stair-case). The objective of the current
paper is to show that a similar problem also occurs for the l1
trend filtering, but, even more importantly, how this problem
can be monitored and mitigated. We propose an alternative
method to avoid this problem. The idea is to notice that the
first and last detected change points in a sequence do not suf-
fer from the stair-case effect. We therefore propose to restart
the algorithm in a second step using only data in between
these two detected change points, and then iteratively go
through the whole sequence in the same way. This idea was
inspired by [12], which uses random segmentation intervals.

In Section 2, the optimality conditions for the method are
derived, and Section 3 presents an interpretation of these con-
ditions, based on which a consistency analysis is performed;
for reasons of space, we only present a heuristic derivation,
based on the analysis of a related problem (c.f., [11]), post-
poning the analytic details for a later publication. In Section 4
a modified scheme to remove fake change points is presented.
Section 5 illustrates some examples of the method and its con-
sistency, and Section 6 concludes the paper.

2. OPTIMALITY CONDITIONS

To derive the optimality conditions for the `1 trend filter, we
re-write (1.1) as

min
{mt}Nt=1,{wt}Nt=2

1

2

N∑

t=1

[yt −mt]
2 + λ

N∑

t=3

|wt|

s.t. wt = mt − 2mt−1 +mt−2, t = 3, . . . , N.

To derive the optimality conditions, consider the Lagrangian

L({mt}Nt=1, {wt}Nt=2, {zt}N−1t=2 ) =
1

2

N∑

t=1

[yt −mt]
2+

λ

N∑

t=3

|wt|+
N∑

t=3

zt−1(mt − 2mt−1 +mt−2 − wt).

Minimizing L with respect to m1, . . . ,mN , we obtain

− (y1 −m1) + z2 = 0,

− (y2 −m2)− 2z2 + z3 = 0,

− (yt −mt) + zt−1 − 2zt + zt+1 = 0, t = 3, . . . , N − 2,

− (yN−1 −mN−1) + zN−2 − 2zN−1 = 0,

− (yN −mN ) + zN−1 = 0.

Iterating these equations backwards in t gives

zt =

t−1∑

i=1

(t− i)[mi − yi], t = 0, . . . , N + 1, (2.1)

with initial and end conditions z0 := z1 := zN := zN+1 :=
0. Thus, {zt} are a doubly integrated version of {mt − yt},
and correspond to the dual variables of the `1 trend filtering
method.

To minimize L with respect to w3, . . . , wN , we force the
subgradient of L with respect to wt to equal 0, which gives

zt−1





= −λ, wt < 0,
∈ [−λ, λ], wt = 0,
= λ, wt > 0.

t = 3, . . . , N,

Therefore, since wt = mt − 2mt−1 +mt−2,

|zt| 6 λ, t = 2, . . . , N − 1,

|zt| < λ ⇒ mt+1 − 2mt +mt−1 = 0, (2.2)
|zt| = λ ⇒ sgn(mt+1 − 2mt +mt−1) = sgn(zt).

where sgn(x) := 1 if x > 0, sgn(x) := −1 if x < 0 and
sgn(0) := 0. In the next section we will study the optimality
conditions (2.1), (2.2) in more detail, to derive consistency
conditions.

3. INTERPRETATION AND CONSISTENCY

The optimality conditions (2.1), (2.2) can be interpreted ac-
cording to the sketch of Fig. 1. From (2.1), zt is essentially
a doubly integrated version of mt − yt. If mt = mo

t , the
true mean of yt, then zt would be an integrated random walk
process, since the term mt − yt is essentially white Gaus-
sian noise plus a deterministic term. In the general case, as
mt and mo

t are both piecewise linear without jumps, the de-
terministic term is a discrete version of a cubic spline, i.e.,
a piecewise cubic polynomial with continuous derivatives of
second order. Due to (2.2), zt must always lie between −λ
and λ, and only touch the boundaries of this tube whenever
there is a change in the slope of mt; zt must equal λ at t0
if mt0+1 − mt0 > mt0 − mt0−1 (i.e., if the slope of mt

increases at t0), or −λ if the reverse inequality holds. In ad-
dition, z0 = z1 = zN = zN+1 = 0, which impose a series of
interpolation constraints on the dual variables zt. To satisfy
these constraints, and those imposed by (2.2), the estimatemt

must suffer a bias whose integrated effect must be positive in
segments where zt should go from −λ (or 0) to λ (or 0), and
negative otherwise.

For λ = 0, the method delivers mt = yt. As λ is in-
creased, the bias terms need to be increased so that zt at
the change points can touch the boundaries ±λ. However,
as shown in Fig. 1, this leads to an estimated trend whose
neighboring slopes at the change points differ less than the
true slopes, and these differences decrease further as λ is in-
cremented, to the point where neighboring slopes coincide,
and the neighboring segments are fused. When λ overcomes
a prescribed value, called λmax, all segments are fused to-
gether, and `1 trend filtering delivers a single linear trend for
the entire dataset. This behavior resembles that of the fused
lasso technique, as detailed in [11].
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Fig. 1. Interpretation of optimality conditions (2.1), (2.2).

To study the consistent recovery of the change points of
mo

t (i.e., those values of t for which mo
t − mo

t−1 changes2),
we consider the following asymptotic regime3:
• the number of samples N tends to infinity;
• the variance σ2 is kept constant (with respect to N );
• the number of change points M is bounded; and
• the magnitude of the changes in slope ofmo

t is bounded
from above and from below.

Following the derivation in [11], one can show that under
these assumptions it is possible to recover the approximate lo-
cation of all the change points if the consecutive changes in
slope have all alternating signs, as in Fig. 1. By “approxi-
mate location” we mean that, for a specific choice of λ, the
estimated mt would have change points (perhaps more than
1) at a distance O(ε) of the true change points of mo

t , where
ε is fixed but arbitrarily small, and no other estimated change
points elsewhere. Based on the optimality conditions of Sec.
3, consistent change point recovery can be interpreted as the
possibility of choosing the initial value ofmt and its slopes so
that the graph of zt lies within−λ and λ, touching the bound-
aries only within an O(ε) of the true change point instants.

To get some intuition behind the change detection consis-
tency result, notice that a bias term of order µ in the slope
of mt may lead to a bias of order µ(N/M)2 between the end
points of zt in one segment, so for a given λ, µ has to be of or-
der λM2/N2 to achieve the interpolation constraints. There-
fore, by choosing λ = o(N2), trend filtering can choose the
slopes within µ of the true slopes of mo

t so that zt touches
alternating boundaries of the tube ±λ within an O(ε) neigh-
borhood of the true change points. On the other hand, making

2In many applications, it is important to know when the changes in trend
have occurred. In addition, once the change points have been located, the
trend can be consistently estimated by fitting a linear function to each indi-
vidual data segment between the estimated change points.

3These assumptions are made for simplicity, but they can be relaxed.

λ grow slowly with N may allow zt to touch the boundaries
±λ outside theO(ε) neighborhoods of the true change points,
due to the variability of the integrated random walk, leading
to “fake” change points. This can be prevented by noting that
the variance of integrated random walk, around the center of
each segment, is of order σ2(N/M)2, i.e., its standard devia-
tion is of order σN/M . Therefore, λ should grow faster that
N to keep the boundaries away from the random variations of
the integrated random walk. Notice, finally, that it is not pos-
sible to recover the exact location of the change points, but
only approximately, because in the neighborhood of the true
change points the graph of zt stays very close to the bound-
ary, and noise may inevitably introduce fake change points in
those neighborhoods (as zt tries to cross the boundary).

This heuristic description can be formalized, as done in
[11] for the fused lasso, to establish that for λ ∝ N c, with
1 < c < 2, `1 trend filtering achieves approximate (O(ε))
change point recovery with probability tending to 1 as N →
∞, if all consecutive changes in slope have alternating signs.

In case some of the consecutive changes in slope have the
same sign, change point consistency is not possible. This fol-
lows again from the dual interpretation of `1 trend filtering.
When two consecutive change points have the same direc-
tion, zt is forced to go from λ (−λ) to λ (−λ) within the
segment joining the change points, without ever crossing the
boundary in between. Due to these interpolation constraints,
the deterministic term in mt − yt is asymptotically negligi-
ble, so zt must stay very close to the boundary without cross-
ing it within the segment (outside the O(ε) neighborhoods
of the true change points); due to the random component of
mt − yt, the probability of achieving this does not go to zero
asN →∞, leading to the possible appearance of fake change
points in such segment. This issue is related to the so-called
stair-case effect in the fused lasso [11], where the presence
of two or more consecutive changes of the mean level in the
same direction introduces spurious change points. An exam-
ple of this phenomenon will be given in Section 5.

4. A MODIFIED SCHEME FOR TREND FILTERING

The discussion in Sec. 3 leads to a natural scheme for achiev-
ing change point consistency even in the presence of consec-
utive changes in slope of the same sign. The key idea is that,
asymptotically in N , fake change points can only appear in
segments between other detected change points. Therefore,
if we apply `1 trend filtering to a N -sample sequence, the
first and last detected change points are real, i.e., they ap-
proximately correspond to true change points. We can then
consider only the segment of data between the first and last
change points, and apply `1 trend filtering to this new data.
Proceeding iteratively in this manner, we can single out all
the true change points of the sample, disregarding those fake
ones that appear in the first iterations of this scheme.
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5. EXAMPLES

In this section we consider two examples, both with N =
10000 samples and variance σ2 = 1. In the first example,
the mean value is a piecewise linear signal which goes from
1 to 2 between t = 1 and t = 3333, then to 4 at t = 6666,
and finally back to 1 at t = 10000. The slopes of this signal
change in alternating directions, so from Sec. 3 we should ex-
pect `1 trend filtering to achieve change detection recovery;
the situation is shown in Fig. 2. Here, `1 trend filtering suc-
cessfully detects change points in the neighborhood of their
true locations, and no spurious change points have appeared.
Actually, 2 estimated change points appear close to the first
true one, but due to their close proximity we consider them
as one successful detection. λ was chosen equal to 130000,
which is approximately N1.3; for this dataset, the method can
recover detect the change points when λ 6 260000 ≈ N1.35.

0 2000 4000 6000 8000 10000
−5

0

5

10

0 2000 4000 6000 8000 10000
−2

−1

0

1

2
x 10

5

Fig. 2. Successful change point recovery. Top: The cyan
line shows the data yt, while the dashed (black) and solid
(blue) lines correspond to the true and estimated means, re-
spectively, which nearly coincide; the dashed (red) and solid
(blue) vertical lines denote the true and estimated change
points, respectively. Bottom: Graph of the dual variable zt.

Consider now a second example, where the mean is a
piecewise linear signal which goes from 1 to 4 between t = 1
and t = 2500, stays at 4 until t = 5000, then decreases down
to 2 at t = 7500, and finally goes back to 1 at t = 10000.
In this case, the changes in slope are not purely alternating in
sign, so we should expect the presence of fake change points
not close to the true ones. Fig. 3 shows this situation for
λ = 20000. Here we see that `1 trend filtering correctly de-
tects the true change points (i.e., it identifies change points
close to the true ones); however, there is a fictitious change
point in the segment between the first two true change points.
Notice that changing λ has no effect on this fake change point:
it is not possible to remove it by increasing λ, as this cannot
alter the bias term in the affected segment, but only on those
segments where zt is forced to move from one boundary to
the other (or close to the initial and final end-points).

To remove the presence of fake change points, we use the

0 2000 4000 6000 8000 10000
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x 10

4

Fig. 3. Failed change point recovery. Same notation as Fig. 2.

scheme of Sec. 4, according to which we consider the first
and last estimated change points as “true” ones, and re-apply
`1 trend filtering only to the data between them. The result
is shown in Fig. 4. Note here that the fake change point has
completely disappeared! Furthermore, since zt at the loca-
tion of the fake change point is far from ±λ, the monitoring
scheme provides a very robust means to remove such artifice.
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Fig. 4. Modified scheme applied to second example.

6. CONCLUSIONS

In this paper we have studied the change point consistency of
`1 trend filtering, a technique for the estimation of piecewise
linear trends in noisy time series. Based on a geometric inter-
pretation of the method, we have provided an intuitive under-
standing of situations when the method succeeds and when
it fails. Furthermore, building on this interpretation, we have
developed a technique for removing false change points.
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