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ABSTRACT

Future radar systems are expected to use waveforms of a high
bandwidth, with an advantage of an improved range resolu-
tion. Herein, a technique to design robust wideband wave-
forms is developed. The context is detection of a single object
with partially unknown parameters. The technique achieves
an optimal detection speed for a desired resolution, maintain-
ing a high detection performance. Many radar systems also
require fast adaptation to a variable environment. Hence, the
technique is devoted to rapidly design waveforms. In terms of
probabilities of detection and false alarm, numerical evalua-
tion shows the efficiency of the method when compared with
a chirp signal and a Gaussian pulse.

Index Terms— robust detection, detection speed, wave-
form design

1. INTRODUCTION

Signal processing techniques for radar systems have to a great
extent focused on narrowband signals. At this time, signal
generators are able to synthesize arbitrary signals with a large
bandwidth [1, 2]. This provides interesting new opportuni-
ties, e.g., achieving an increased range resolution compared
to a narrowband counterpart [3–6]. However, the simplify-
ing narrowband assumption, where velocity is approximated
as a frequency shift, is not valid [6]. This substantially com-
plicates the pulse and receiver filter design, as estimation of
time-delay and Doppler-shift cannot be separated in time and
frequency. One practical solution is to scan the delay-Doppler
parameter space by multiple transmissions and utilize simple
matched filter receivers to perform detection over a small re-
gion of the parameter space through each pulse transmission.
In this case, a high quality of detection simply depends on
a high filter output from the interior of the region and a low
output by the exterior.

This approach relates to other contributions in the area.
For example, design of wideband ambiguity functions with
narrow peaks for Orthogonal-Frequency-Division-Multiplexing
signals is considered in [7, 8]. In [9] various techniques for
designing narrowband or wideband waveforms are discussed.
Interesting analysis of wideband radar systems from various
perspectives are also found in [10–12]. It is observed that
the above techniques provide high detection performance

with small detection regions, which insures a high resolution.
However, decreasing the detection region size leads to an in-
crease in the number of transmissions, subsequently resulting
in an increased overall scan time. Unfortunately, the previous
studies do not discuss a method to control the region size.

To combat this issue, this work proposes a method to de-
sign waveforms that robustly detect targets in specified re-
gions of the parameter space leading to a desired scan time.
Although this leads to detections of a restricted resolution, it
is easy to adapt a secondary super-resolution detection proce-
dure [13–15] based on the original estimates. This provides a
highly flexible design with low complexity.

The design is formulated as an optimization by means of
a Gaussian basis expansion, and the performance is, i.a., pre-
sented in terms of probabilities of detection and false alarm.
A fast solution of the optimization is proposed. This is useful
when a rapid online modification of the detection scheme is
necessary. The performance is evaluated by means of numer-
ical experiments.

2. ELEMENTS OF THE PROBLEM

Consider a stationary bistatic radar system that, on the trans-
mitter side, employs M waveform generators each connected
to an antenna element. The receiver side comprises one an-
tenna element connected to a filter bank. Each generator sam-
ples a signal composed of N basis functions ψm,n(t), where
m and n are the antenna and basis label, respectively, i.e.,

x̃m(t) =

N∑
n=1

sm,nψm,n(t). (1)

where x̃m is a baseband waveform at the mth signal gener-
ator, and sm,n is a complex scalar coefficient. The received
signal is a mixture of the reflected transmitted waveforms, and
can be expressed, for a point target, as

y(t; τ, µ) = σt

M∑
m=1

xm(µ(t− τ − τm(φ))) + n(t). (2)

where σt is an object’s reflection coefficient, τ denotes a time-
delay from the zero-phase sensor to a receiver, µ is a time-
scaling related to a velocity of an object [5, 6], and τm(φ) is
given by an inter-element spacing and a spatial direction, φ,
towards a object. This direction, azimuth and/or elevation, is
assumed to be known. If this is not the case, a beamforming
technique, see, e.g., [16–18], is necessary. In (2), xm(t) =
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x̃m(t)ejωct is centered around the system’s carrier frequency
fc = ωc/2π and n(t) is a white Gaussian noise.

At the receiver side the down-converted signal, ỹ(t; τ, µ) =
y(t; τ, µ)e−jωct, is passed through a filter bank, i.e.,

r(τ, τ ′, µ, µ′) =

∫
h∗(t; τ ′, µ′)ỹ(t; τ, µ)dt. (3)

Here, (·)∗ denotes the complex conjugate. If a so-called
matched filter structure [19, 20] is employed, the correlating
filters, h(t; τ ′, µ′), are equal to the received signal calculated
from their corresponding transmission model.

Assume that the basis kernels, ψm,n(t), are Gaussian.
This particular choice of functions results in that (3), omitting
noise contributions, can be analytically calculated to

r(τ0, µ, µ
′) =

∑
m,m′∈M
n,n′∈N

σt
√
µµ′sm,nsm′,n′e

−jωcµ′(τ0+τm,m′ )√
2π(µ2σ2

m′,n′ + µ′2σ2
m,n)

·

e
−

(µ′µm,n−µµm′,n′+µµ
′(τ0+τ

m,m′ ))
2

2(µ2σ2
m′,n′

+µ′2σ2m,n)
eωc(µ−µ

′)(jµG−ωc2 (µ−µ′)σ2
G),

(4)
where M = {1 . . .M}, N = {1 . . . N}, σ2

m,n and µm,n
correspond to the variance and the mean of the nth basis ker-
nel sampled by the mth signal generator, respectively, τ0 =
τ − τ ′, τm,m′ = τm(φ)− τm′(φ), and

µG =
µµm,nσ

2
m′,n′ + µ′(µm′,n′ − µ′(τ0 + τm,m′))σ

2
m,n

µ2σ2
m′,n′ + µ′2σ2

m,n

σ2
G =

σ2
m,nσ

2
m′,n′

µ2σ2
m′,n′ + µ′2σ2

m,n

.

The expression in (4) is equivalently written in a matrix
form as r(τ0, µ, µ

′) = σts
HR(τ0, µ, µ

′)s, where s =

[s1,1 . . . sN,1, s1,2 . . . sN,2 . . . sN,M ]
T and R(τ0, µ, µ

′) con-
tains the entries

Rm,m′,n,n′(τ0, µ, µ
′) =

σt
√
µµ′e−jωcµ

′(τ0+τm,m′ )√
2π(µ2σ2

m′,n′ + µ′2σ2
m,n)

· (5)

e
−

(µ′µm,n−µµm′,n′+µµ
′(τ0+τ

m,m′ ))
2

2(µ2σ2
m′,n′

+µ′2σ2m,n)
eωc(µ−µ

′)(jµG−ωc2 (µ−µ′)σ2
T ),

in a proper order.

2.1. Robust Waveform Design Based on Statistical Perfor-
mance

Target detection is formulated as a statistical problem as fol-
lows. Take a region S of the parameter pairs (µ, τ) in which
a good detection performance is desired. The detection is
based on the output r from a filter matched to a nominal point
(τ ′, µ′) ∈ S.

The idea is to develop a simple decision rule for r, which
identifies whether a target is present in S or not. The problem
can be formulated as a composite hypothesis testing, where
H0 denotes the hypothesis that no source is present, in which
r is generated by a white Gaussian noise processes, and H1

denotes the composite hypothesis of source existence. Then,
the likelihood functions under the different hypotheses are

H0 : r ∼ N (0, σ2sHR0s)

H1 : r ∼ N (σts
HR(τ0, µ, µ

′)s, σ2sHR0s),
(6)

where R0 = R(τ0 = 0, µ′, µ′) and σ2 denotes the noise
power. The pair (τ0, µ) denotes the unknown true parame-
ters. Later, we simply refer to it as θ. Let us consider the
Generalized Likelihood Ratio Test (GLRT) [21], which can
be written as

min
θ,σt
|r − σtsHR(θ)s|2 + γ ≷ |r|2, (7)

where the argument µ′ is dropped as its value is assumed to be
fixed, and γ is a threshold. As σt is free the GLRT simplifies
to

γ ≷ |r|, (8)

which is a simple power thresholding scheme.
For this detector probabilities of detection, PD, and false

alarm, PFA, can be calculated to

PD(θ, σt, γ) =
1

πsHR0sσ2

∫
|r|>γ

e
− |r−σts

HR(θ)s|2

sHR0sσ2 dν(r)

PFA =
1

πsHR0sσ2

∫
|r|>γ

e
− |r|2

sHR0sσ2 dν(r),

(9)
where ν(. ) denotes the Lebesgue measure on the complex
plane of r.

To optimize waveforms, consider the worst detection per-
formance PD(θ, σt, γ) over all scenarios defined by (θ, σt),
where PFA = α is fixed. One may define the best design as
the one maximizing the worst detection. Unfortunately, direct
calculation shows that this approach fails in the current occa-
sion as the worst detection performance is independent of the
choice of waveform. However, this can be easily corrected
by a minor modification of the definition of optimality, which
is given in Definition 1, where PD,worst, the worst detection
performance.

Definition 1 A design s is optimal for a given value of α if for
sufficiently small values of ε, the set Sε of ε−worse scenarios,
defined by

Sε = {(θ, σt) | |PD(θ, σt) < PD,worst + ε} (10)

has a minimal area (Lebesgue measure) in any compact re-
gion.

This gives a design, where it is least likely to encounter a
low performance. The following theorem provides a practical
method to realize this design.
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Theorem 1 The optimal design in the sense of Definition 1 is
a solution to the following optimization

max
s

min
θ

|sHR(θ)s|

s.t. sHR0s = 1.
(11)

The reader may notice that (11) could be directly introduced
and intuitively validated. It is simple to verify that |sHR(θ)s|
and sHR0s are the share of signal and noise in the filter out-
put energy over S, respectively. Thus, (11) promotes a uni-
formly high signal-output energy. However, the above calcu-
lations tie (11) to a statistically sound detection approach.

Clearly, (11) guarantees high detection rate, but it does
not consider false detection due to coupling between the filter
and out-of-box sources. However, it is expected that the finite
energy constraint automatically enforces low sidelobe energy.

3. PROPOSED METHOD FOR SOLVING (11)

It is difficult to exactly solve (11), as R(θ) is in general
not Hermitian. One approximate solution is to consider
the inner optimization over a finite number of grid points,
θ1, θ2, . . . , θl. Then, (11) can be written as

max
s

min
λ1,λ2,...,λl

∑
k

|sHR(θk)s|λk

s.t. sHR0s = 1,
∑
k

λk = 1,
(12)

where λk is a positive number. By changing the order of min-
imization and maximization in (12) we obtain the following
suboptimal design, which is simpler to solve [22].

min
λ1,λ2,...,λl

max
s

∑
k

|sHR(θk)s|λk

s.t. sHR0s = 1,
∑
k

λk = 1.
(13)

As opposed to the uniformly optimal design in the original
order, the change of order results in an optimization consid-
ering average performance weighted by {λk}. Now, the in-
ner optimization in (13) is simplified as follows. Consider
the eigenvalue decomposition of R0, i.e., R0 = UΣUH =
U0Σ0U

H
0 , where Σ0 and U0 are the nonzero blocks of Σ

and its corresponding columns of U, respectively. Let u =

Σ0
1
2 U0

Hs, which implies that any vector s is uniquely de-
composed in terms of its corresponding u as

s = U0Σ0
− 1

2 u + U1p, (14)

where p is a suitable vector and U1 spans the null space of
R0. Note that, any vector s with sHR0s = 0 corresponds to
zero-energy, which leads to a zero output-signal. This clearly
means that R(θ)U1 = 0 for every θ. Thus, the term U1 does
not have any effect on the waveform design, and the inner
optimization in (13) can be expressed as

max
u

∑
k

λk|uHR̃(θk)u)|

s.t. ‖u‖22 = 1,

(15)

where R̃(θk) = Σ
−1/2
0 U0

HR(θk)U0Σ0
− 1

2 .
To solve (15), we propose the following efficient scheme.

First, note that, |α| = max
φ
<(e−jφα). Thus, (15) is equiva-

lently written as

max
u,φ1,φ2,...,φl

∑
k

λk<(e−jφkuHR̃(θk)u)

= max
u,φ1,φ2,...,φl

uHM(φ1, φ2, . . . , φl)u,
(16)

where

M(φ1, φ2, . . . , φl) =
∑
k

λk(e
−jφkR̃(θk) + ejφkR̃H(θk)).

(17)
As the optimization is performed over all unit vectors u, the
solution for a fixed choice of φ1, . . . , φl is the eigenvector of
M corresponding to the largest eigenvalue, which we denote
by um(M) and λm(M), respectively. Accordingly, we pro-
pose the following cyclic solution of the inner optimization.

1. Start from an arbitrary choice of φ0k and set r = 1.

2. Get Mr−1 = M(φr−11 , . . . , φr−1n ) and set ur =
um(Mr−1) by calculating λm(M(φr−1)).

3. Evaluate φnk as the argument of the complex number
(ur)HR̃(θk)ur , update r to r + 1 and go to step 2.

Step 2 and step 3 increase the cost of (16) with respect to u
and φ. Thus, the cost monotonically increases, which guaran-
tees convergence.

Once a solution, say ū, for the inner optimization and
given values of λk is obtained, a local optimization technique
such as steepest descent is performed to update λk for the
outer minimization. Although, the gradient, ∇F , of the cost
F = F (λ1, . . . , λl) at a given point is simple to compute, ap-
plying a steepest decent technique is generally difficult. How-
ever, the number of grid points, l, in (12) may be significantly
low as a result of sufficient correlation between conceivable
return signals. In fact, we employ only a pair of properly se-
lected grid points, typically the corner points of a parameter
box, from which the outer optimization can be substantially
simplified to

min
0≤λ≤1

F (λ, 1− λ), (18)

and a resulting 1-dimensional optimization is either carried
out by a grid search or a bisection method [23].

4. NUMERICAL VALIDATION

For different choices of regions in which a robust performance
is desired, the efficiency of the proposed algorithm is pre-
sented in terms of average and minimum correlation as well
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as Receiver Operating Characteristic (ROC) [24] curves. The
number of waveform generators is M = 3 for which N = 30
basis functions are generated. The system has a bandwidth-
time product of 200, the nominal value µ′ is 0.94, and the
target’s reflection coefficient is set to σt = 1.

The Gaussian basis are generated with mean values, µk,
uniformly located over the pulse duration, and standard devi-
ations selected randomly within an interval [σmin,k σmax,k],
where σmax,k is such that the effective interval between µk ±
3σk is ensured to lie within the pulse time, and σmin,k re-
stricts the highest effective frequency component. Results are
averaged over 100 independent draws of standard deviations.

The region in which the performance is evaluated is cho-
sen as a box, which varies in size. The smallest box is within
the confines of µ ∈ [µ0−εµ, µ0+εµ] and τ ∈ [−ετ , ετ ], where
εµ and ετ are determined with respect to twice the system’s
resolution limits. In order to investigate the effect of vary-
ing uncertainty, the box size increases with a factor β to εµ/β
and ετ/β, where β = [1, . . . , 0.1]. A scan time can be defined
as the number of necessary regions multiplied with the pulse
time and spatial sectors, neglecting processing time. Then,
the constant β2 relates to a relative scan time, as it is propor-
tional to the number of necessary regions, i.e., a smaller β
divides the search space into fewer regions.

The minimum and average in-box correlation, |sHR(θ)s|,
are presented in Table 1 and Table 2. The correlation proper-
ties are evaluated over a dense grid and then taking average
or minimum, respectively. The outcome is compared with the
cases where a chirp pulse and a single Gaussian pulse is trans-
mitted from each signal generator, with the same bandwidth-
time product. It should be noted that the chirp pulse provides
a high resolution, and is not expected to give a robust perfor-
mance. Figure 1 shows the ROC curves, which are calcu-

Table 1: Average correlation properties.

Algorithm β2 = 1 β2 = 0.36 β2 = 0.16 β2 = 0.04
Proposed alg. 0.99 0.97 0.94 0.65
Gaussian 0.97 0.88 0.80 0.60
Chirp 0.30 0.21 0.15 0.09

Table 2: Minimum correlation properties.

Algorithm β2 = 1 β2 = 0.36 β2 = 0.16 β2 = 0.04
Proposed alg. 0.98 0.93 0.85 0.41
Gaussian 0.88 0.70 0.42 0.1
Chirp 0.0039 0.0018 0.0018 0.0016

lated through a Monte Carlo simulation using the estimator
in (8) with 106 noise realizations, and a Signal-to-Noise Ra-
tio (SNR) of 10 dB. The Figure shows the characteristics for
a varying threshold γ, and also compared with a case where
coefficients are randomly selected. Curves corresponding to
β2 = 1 illustrates performance in which the smallest box
is selected. The performance decreases when expanding the
region. However, it exhibits a robust behavior for relatively
large boxes.

The last part presents how an out-of-region source affects
the ROC curve. This source increases probability of false
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Fig. 1: ROC curves when the SNR is 10 dB for regions spec-
ified by β2 = [1, 0.16, 0.04].

alarm if its return is highly correlated with the matched fil-
ter for the region of interest. The position of the source is
randomly generated outside the interval of µ and τ . Results
shown in Figure 2 illustrates ROC curves when the out-of-
region source has a reflection coefficient of σos = 1, the out-
come when σos = −1 coincides with σos = 1.
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Fig. 2: ROC curve when an out-of-region source with σos = 1
is present. The SNR is 10 dB and β2 = 0.36.

5. CONCLUSIONS

For a wideband radar, we considered a robust technique for
waveform design within relatively wide parameter ranges,
which ensures a desirable detection time. The method was
developed from a statistical framework for detecting a single
target, and simplified by approximation to obtain a tractable
design. Being robust implies that the waveforms are not
designed to provide good resolution properties. Therefore,
a next step is to apply a super-resolution technique to the
restricted area obtained from this first stage.

The correlating filters at the receiver side were selected
to have a matched filter structure. We remark that, a differ-
ent kind of filter design, e.g., [25–27] might result in better
performance, which is a topic for future investigation.

The method ensured reliable detection in the desired range
of target parameters. The probabilities of detection and false
alarm are illustrated with ROC curves, which showed a small
loss of performance when increasing the desired region of re-
liable detection up to a certain size. The outcome was com-
pared with two transmit signal schemes and showed an in-
creased performance for the investigated problem. Note that,
chirp signals have good resolution properties, which makes
them unsuitable for the discussed application. It was also seen
that in presence of an out-of-region source the detection prop-
erties are only slightly affected, which implied that the design
promoted a low sidelobe energy.
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