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ABSTRACT

In this paper, we consider the problem of transmit code de-
sign to optimize the detection probability of an extended
target embedded in Gaussian signal-dependent interference.
We model the target witha priori known target impulse
response (TIR) structure along with an unknown reflection
factor. As is known, the performance of the generalized
likelihood ratio test (GLRT) detector, for the case at hand,
monotonically increases with the signal-to-interference-plus-
noise ratio (SINR). Hence, we deal with the code design
problem via maximizing the SINR. We also enforce a peak-
to-average power ratio (PAR) constraint on the sought code.
We devise a cyclic method to tackle the highly non-convex
design problem. Numerical results highlight the effectiveness
of the proposed method to improve the detection performance
of the system.

Index Terms— Code design, detection performance, ex-
tended target model, signal-dependent interference.

1. INTRODUCTION

Transmit code design can provide significant performance im-
provements for active sensing systems by suitably exploiting
some prior knowledge about the target and the surrounding
environment [1]. As such, a lot of research activities have
been focused on the waveform design problem [2–5]. In fact,
waveform optimization leads to performance improvements,
in terms of target detection, target identification and classifi-
cation, as well as tracking.

The problem of extended target detection has been the
topic of several studies for the last decades [6–9]. Through
this rich literature, many papers have been conducted to opti-
mize the transmit waveform in order to improve the detection
probability (Pd) (see e.g., [2, 10–14]). In [2], a solid paper in
this field, a signal-to-noise ratio (SNR)-based waveform de-
sign approach has been introduced to improve the detection
probability of an extended target in a noise-only environment.
There, the target impulse response (TIR) has been modeled to
be deterministic and the SNR criterion is optimized. More

This work has been partially funded by National Elite Foundation of
Iran.

challenges appear when considering signal-dependent inter-
ference. In [10], using the SNR-based procedure, an iter-
ative approach has been proposed to optimize the detection
probability associated with a deterministic target embedded
in signal-dependent interference environment; but there is no
guarantee for the convergence of the algorithm [13]. More-
over, in [11], illumination waveforms matched to stochastic
targets have been devised in the presence of signal dependent
interference. The signals have been synthesized accordingto
SNR and mutual information (MI) optimization. Finally, in
[12], a parametric waveform design approach under an en-
ergy constraint has been devised, where the clutter and noise
are assumed complex Gaussian processes with known statis-
tics.

In this paper, we devise a novel code design method to op-
timize the detection probability associated with the extended
target in the presence of clutter (i.e., a signal-dependentin-
terference). We assumea priori known TIR structure with
an unknown reflection factor. The performance of the gen-
eralized likelihood ratio test (GLRT) detector is determined
via signal-to-interference-plus-noise ratio (SINR) of the de-
tector. Therefore, we deal with the code design problem via
maximization of the SINR. In order to obtain practically inter-
esting waveforms, we also consider constrained code designs
and impose the peak-to-average power ratio (PAR) constraint.
The cast design problems are non-convex. We devise a cyclic
method to tackle the constrained design problem.

The rest of the paper is organized as follows. The problem
formulation is presented in Section 2. Section 3 is dedicated
to deal with the transmit code design. Numerical examples
are provided in Section 4. Finally, conclusions are drawn in
Section 5.

2. PROBLEM FORMULATION

2.1. Target Model

In high range resolution (HRR) radar systems, the target phys-
ical extent is much larger than the range cell size; and hence
it no longer holds true to model the target as a point-like scat-
terer. Precisely, the target can be described as a set of multi-
ple dominant scattering centers; i.e., portions of the target that
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yield significant returns are located into a number of isolated
range cells along the radar line-of-sight (LoS) [15]. In this
context, the target can be represented as a linear system with
a finite impulse response (i.e., its TIR). In what follows, the
TIR of the extended target of interest is denoted byα ⋅ t(n),
wheret(n) is the deterministic TIR structure, which can be
available through track files or other sources of sensing, and
α ∈ C is the unknown reflection factor which accounts for the
attenuation and delay coefficient of the propagation environ-
ment. We assume thatt(n) has a support interval of length
Q, viz., t(n) = 0 unlessn ∈ {0, . . . ,Q − 1}. The backscat-
tered signal associated with such a (stationary) target is then
characterized by the convolution of the transmit signal with
the TIR (assuming the linear environment).

2.2. Signal Model

We consider a monostatic radar system that transmits anN -
dimensional fast-time codes = [s(0), . . . , s(N − 1)]T ∈ CN .
At the receive side, the received signal is down-converted to
the baseband, underwent the pulse matched filter and then
sampled. At the time instancen, the received signal associ-
ated with the extended target of interest (with the TIRt(n)),
embedded in a clutter environment, can be expressed as

r(n) = [α ⋅ t(n) + c(n)]⊗ s(n) + v(n), (1)

where⊗ denotes the convolution operator,c(n) denotes the
clutter impulse response (CIR), andv(n) is the filtered sam-
ple of the signal-independent interference (such as noise,jam-
mers, co-channel interference, etc.). LetM = Q + N − 1

denote the number of received samples. Collecting all the ob-
servation samples{r(n)}M−1n=0 in the observation vectorr =[r(0), . . . , r(M − 1)]T ∈ CM , we have

r = α ⋅ Ts +Cs + v, (2)

with T = ∑
Q−1
n=0 t(n)Jn andC = ∑M−1

n=−N+1 c(n)Jn being the
TIR and the CIR matrices, respectively; and the matrixJn

denotes theM ×N -dimensional shift matrix given by

Jn(ℓ1, ℓ2) = δℓ1,ℓ2 , ℓ1 ∈ {1, . . . ,M}, ℓ2 ∈ {1, . . . ,N}. (3)

Herein, the vectorv = [v(0), . . . , v(M − 1)]T represents
the interference vector. We assume thatv is a (circularly
symmetric complex) Gaussian vector with zero-mean and the
covariance matrixRv = E[vv†]. Let the clutter vectorc
be defined asc = [c(−N + 1), . . . , c(M − 1)]T ∈ CP with
P =M +N − 1. In the following, we modelc as a (circularly
symmetric complex) zero-mean Gaussian random vector with
covariance matrixRc = E[cc†], that is,c ∼ NC(0,Rc) [16].
Note that clutter and interference covariance matrices areas-
sumed a priori known exploiting cognitive paradigms that re-
sort to geographical, meteorological, and previous scans in-
formation [3, 5, 17]. Finally, the vectorsv andc are supposed
statistically independent.

2.3. Detection Problem

Considering the signal model (2), we are interested to estab-
lish whether the received signal contains the extended target
return. The problem can be formulated as the following bi-
nary hypothesis test

{ H0 ∶ r = Cs + v

H1 ∶ r = α ⋅ Ts +Cs + v
. (4)

Due to the Gaussian distributions of the interference and the
clutter vectors, the statistical distributions ofr (for a prefixed
transmit code vectors and a given factorα), is

r∣α ∼ { H0 ∶ NC(0,Rs)
H1 ∶ NC(α ⋅ Ts,Rs) , (5)

with Rs ≜ E[CssHCH] +Rv. Note that

E[CssHCH] = E[SccHSH] = SE[ccH]SH = SRcS
H

whereS = ∑N−1
n=0 s(n)J̄T

N−n−1, with J̄n being theP ×M -
dimensional shift matrix defined similar to (3). The GLRT
detector associated with (4), which coincides with the opti-
mum test (according to the Neyman-Pearson criterion, if the
phase ofα is uniformly distributed in[−π,π[), is given by
[18]:

∣wHr∣2 H1

≷
H0

η, (6)

with η being the detection threshold set according to a desired
level of probability of false alarm (Pfa) andw =R−1s Ts de-
notes the receive filter associated with the above GLRT de-
tector. In light of the definition ofw, the SINR of the receive
filter output can be expressed as

SINR(s) = ρ2 = sHTHR−1s Ts =wHR−1s w. (7)

The detection probabilityPd for the non-fluctuating target and
given valuePfa can be expressed as [19]:

Pd = Q (√2∣α∣ρ,√−2 lnPfa) , (8)

whereQ(⋅, ⋅) denotes the MarcumQ function of order1. Note
that for a given value ofPfa, the probability of detectionPd

is a monotonically increasing function of the SINR (i.e.,ρ2).
Consequently, in the following we deal with the waveform
design via maximizing the SINR in (7).

3. TRANSMIT CODE DESIGN

The performance of the GLRT detector (6) is a monotoni-
cally increasing function of the SINR. Therefore, the transmit
code design problem can be formulated as the following con-
strained optimization problem

max
s∈C

sHTH(SRcS
H +Rv)−1Ts (9)
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whereC denotes the desired constrained set (to be discussed
in Section 3.1). The problem (9) is non-convex and we devise
a novel cyclic method to tackle it. First consider the following
proposition which gives an equivalent for the above problem.

Proposition 1. Let y ∈ CM+1 be an auxiliary vector. Then,
(9) can be equivalently cast as the following minimization

min
y,s∈C

yHRy, (10)

s.t. yHu = 1,

whereu = [1 0M×1]T , R ≜
⎡⎢⎢⎢⎣

θ sHTH

Ts Rv +SRcS
H

⎤⎥⎥⎥⎦, andθ

is sufficiently large such thatR ≻ 0.

The problem (10) is still non-convex and the idea is to
cyclically solve it with respect to (w.r.t.)y ands. For fixeds,
the solution to the problem (10) is given by [20]

y =
R
−1
u

uHR−1u
. (11)

For fixedy, the optimization in (10) boils down to the
following problem

min
s∈C

yHRy. (12)

Next, we explicitly express the objective function of the prob-
lem (12) w.r.t. s. Let y = [y1 yT

2
]T and observe that the

terms associated with the sought codes in the objective of
(12) can be written as

tr{SRcS
H
y2y

H
2 } + 2R(y1yH

2 Ts). (13)

Note that the first term of (13) implicitly depends ons. To
obtain an explicit expression w.r.t.s, we consider the identity
S

H
y2 = Y 2s* with

Y 2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 y2(1) . . . y2(M)

⋰ ⋰ ⋰

y2(1) . . . y2(M) 0

⎤⎥⎥⎥⎥⎥⎥⎦

T

N×P

. (14)

Consequently, it can be straightforwardly verified that

tr{SRcS
H
y2y

H
2
} = yH

2
SRcS

H
y2 = s

TY
H
2
RcY 2s*

= sHY T
2
R*

c Y *
2
s, (15)

where the last equation holds due to the fact thatY
H
2 RcY 2 ⪰

0. Finally, the optimization problem (10) for fixedy is equiv-
alent to

min
s∈C

sHQs + 2R(bHs), (16)

whereQ = Y T
2
R*

c Y
*
2

andbH = y1yH
2
T .

Note that, the cyclic minimization of (10) leads to an iter-
ative maximization of the SINR (see [21] for a similar proof).
This increasing property along with the fact that the SINR is
upper bounded by

SINR(s) ≤ ∥s∥2λmax (TH
R
−1
v T ) , (17)

result in the convergence of the values of the SINR.

3.1. PAR Constrained Problem

Let us now focus on problem (9) whenC accounts for both an
energy and a PAR constraint given by

PAR(s) = max
n=0,⋯,N−1

∣s(n)∣2
1

N
∥s∥2 ≤ ζ, (18)

whereζ denotes the desired PAR level. In such case, we have
the following version of (16)

min
s

sHQs + 2R(bHs), (19)

s.t. ∥s∥2 = N, max
n=0,⋯,N−1

∣s(n)∣2 ≤ ζ.
The above problem, which is a quadratically constrained
quadratic program (QCQP), is NP-hard in general butgood
solutions to it can be obtained via employing the proposed
method in [22]. Observe that the problem in (19) can be
equivalently cast as

min
s

s̄HK s̄, (20)

s.t. ∥s∥2 = N, max
n=0,⋯,N−1

∣s(n)∣2 ≤ ζ,

where s̄ = [sT 1]T andK = [ Q b

b
H

0
]. For anyµ >

λmax(K), we can reformulate the above problem as

max
s

s̄HH s̄, (21)

s.t. ∥s∥2 = N, max
n=0,⋯,N−1

∣s(n)∣2 ≤ ζ,
with H = µIN+1 −K. The problem in (21) can be tackled
via the discussed method in [23]. More precisely, the code
vectors of the(k + 1)th iteration (denoted bys(k+1)) can be
obtained froms(k), by solving the optimization problem

min
s(k+1)

∥s(k+1) − ŝ(k)∥, (22)

s.t. ∥s(k+1)∥2 =N, max
n=0,⋯,N−1

∣s(k+1)(n)∣2 ≤ ζ,
where ŝ(k) represents the vector containing the firstN en-
tries ofH s̄(k). The optimization problem (22) is a “Nearest-
Vector” problem with PAR constraint. Such PAR constrained
problems can be dealt with using a recursive algorithm pro-
posed in [24].Algorithm 1 summarizes the design procedure.

4. NUMERICAL EXAMPLES

In this section, we provide some numerical examples to as-
sess the effectiveness of the devised algorithm. We mainly
focus on the detection performance of the system and use the
receiver operating characteristic (ROC) of the detector asso-
ciated with the optimized SINR for the analysis. Besides, we

3923



Algorithm 1 : Code Optimization Algorithm

1: Setk = 0, s(0) = s0;
2: Construct matrixR according to the Proposition 1;
3: Constructy andY 2, according to (11) and (14), respectively;
4: ConstructQ andb usingy andY 2, and then obtainH ;
5: Solve the problem (22) finding a solutions(k);
6: Set k = k + 1 and repeat steps 2-5 until∣SINR(s(k)) −

SINR(s(k−1))∣ ≤ ξ for a givenξ > 0.
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Fig. 1: Amplitude of the TIR of a MiG-21 fighter.

study the impact of the PAR constraint on the SINR and the
detector performance.

Throughout the simulations, we model the TIR employing
the radar backscattering data of a MiG-21 fighter (see [25] for
details), and set the TIR support interval length toQ = 17.
The sequence amplitude is shown in Fig. 1. We assume a
white interference with varianceσ2

v = 1, i.e.,Rv = I. As to
the clutter, we consider a homogeneous clutter environment
sharing an exponentially shaped covariance matrix, where the
correlation between the clutter scatterers atnth and (n′)th
range bins, is given by

E [c(n)c∗(n′)] = σ2

cρ
−∣n−n′ ∣
c , (23)

for n,n′ ∈ {−N + 1, . . . ,M − 1}, with σ2

c = E[∣c(n)∣2] = 1

and parameterρc = 0.9 [16]. As to the transmit code length,
we setN = 20. For the comparison purposes, we also re-
port the SINR and the ROC of the linear frequency modu-

lated (LFM) waveform, given bys0(n) = ejπ
n
2

2N , for n =
0, . . . ,N − 1. Finally, regarding the stop criterion of the de-
vised methods, we setξ = 10−4.

In Fig. 2, the SINR behavior is plotted versus the iteration
number, for the unconstrained (ζ = N , i.e., with just energy
constraint) and the constant-modulus (ζ = 1) code designs.
As expected, the achieved SINR curves have monotonically
increasing behaviors and converge.

The ROCs associated with the optimized transmit codes
of Fig. 2 are depicted in Fig. 3. Here, we assume a reflection
factor with the amplitude∣α∣2 = 2. Note that both figures
include the upper bound on the SINR values obtained in [11].
This upper bound has been derived in frequency domain for
the unconstrained design. The achieved SINR values asso-
ciated with the synthesized (time-domain) code, obtained in
[11], have also been considered (labeled with achieved SINR
in the figures). It can be seen that the system employing our
devised method significantly outperforms the system with the
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Fig. 3: ROC curves associated with Fig. 2.

synthesized waveform in [11], as well as the conventional
LFM. This is due to the fact that our method doesn’t suffer
from the synthesis loss. Other observations related to the
figures reveal that the constant-modulus case enjoys SINR
andPd values closed to those of the unconstrained design.
This clearly suggests to exploit constant-modulus waveforms
which trades off practical advantages of constant-modulus
with a small SINR and detection loss.

5. CONCLUSION

The transmit code design has been considered to optimize the
detection probability of an extended target in the presenceof
signal-dependent interference. The target response has been
modeled with deterministic TIR and an unknown reflection
factor. The performance of the GLRT detector has been de-
termined by the received SINR. Hence, the design problem
has been cast considering the SINR as its figure of merit.
Moreover, a PAR constraint has been imposed to the trans-
mit waveform so as to ensure its practical implementation.
We have devised a novel method, based on the cyclic min-
imization technique, to tackle the highly non-convex design
problem. Numerical examples have been provided to show
the effectiveness of the proposed method. Specifically, this
preliminary study has highlighted significant improvements
w.r.t. the design methodology in [11] as well as the LFM.
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