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ABSTRACT challenges appear when considering signal-dependemt inte

In this paper, we consider the problem of transmit code def€rénce. In [10], using the SNR-based procedure, an iter-
sign to optimize the detection probability of an extendec®tiVe approach has been proposed to optimize the detection
target embedded in Gaussian signal-dependent interferen®roPability associated with a deterministic target emisetld
We model the target witta priori known target impulse N signal-dependent interference enwronme_nt; but thermi
response (TIR) structure along with an unknown reflectiorfuarantee for the convergence of the algorithm [13]. More-
factor. As is known, the performance of the generalize®Ver in [11], |IIum|nat|.on waveforms matched _to stochasti
likelihood ratio test (GLRT) detector, for the case at hand{@rgets have been devised in the presence of signal dependen
monotonically increases with the signal-to-interferephes-  INtérference. The signals have been synthesized accanling
noise ratio (SINR). Hence, we deal with the code designSNR and mutual_ information (MI)_ optimization. Finally, in
problem via maximizing the SINR. We also enforce a peakl12]; @ parametric waveform design approach under an en-
to-average power ratio (PAR) constraint on the sought cod&"9Y constraint has been dew_sed, where the c_Iutter and nois
We devise a cyclic method to tackle the highly non-convex2€ assumed complex Gaussian processes with known statis-
design problem. Numerical results highlight the effeatives ~ UCS-

of the proposed method to improve the detection performance N this paper, we devise a novel code design method to op-
of the system. timize the detection probability associated with the estsh

) ] target in the presence of clutter (i.e., a signal-depenitent
Index Terms— Code design, detection performance, eX-grference). We assurm@priori known TIR structure with
tended target model, signal-dependent interference. an unknown reflection factor. The performance of the gen-
eralized likelihood ratio test (GLRT) detector is deteradn
1. INTRODUCTION via signal-to-interference-plus-noise ratio (SINR) oé fthe-
tector. Therefore, we deal with the code design problem via
Transmit code design can provide significant performanee immaximization of the SINR. In order to obtain practicallyent
provements for active sensing systems by suitably explpiti esting waveforms, we also consider constrained code design
some prior knowledge about the target and the surroundingnd impose the peak-to-average power ratio (PAR) constrain
environment [1]. As such, a lot of research activities haverhe cast design problems are non-convex. We devise a cyclic
been focused on the waveform design problem [2—-5]. In factnethod to tackle the constrained design problem.
waveform optimization leads to performance improvements, The rest of the paper is organized as follows. The problem
in terms of target detection, target identification andsifas  formulation is presented in Section 2. Section 3 is deditate
cation, as well as tracking. to deal with the transmit code design. Numerical examples

The problem of extended target detection has been thgre provided in Section 4. Finally, conclusions are drawn in
topic of several studies for the last decades [6—9]. Througkection 5.

this rich literature, many papers have been conducted te opt

mize the transmit waveform in order to improve the detection

probability (P;) (see e.g., [2, 10-14]). In [2], a solid paper in 2. PROBLEM FORMULATION

this field, a signal-to-noise ratio (SNR)-based waveform de

sign approach has been introduced to improve the detecti(%l' Target Model

probability of an extended target in a noise-only environme | high range resolution (HRR) radar systems, the targetphy

There, the targetimpulse response (TIR) has been modeledity extent is much larger than the range cell size; and hence

be deterministic and the SNR criterion is optimized. Morejt ng longer holds true to model the target as a point-like-sca
This work has been partially funded by National Elite Fourmmof ~ t€rer. Precisely, the target can be described as a set af mult

Iran. ple dominant scattering centers; i.e., portions of thegttitat

978-1-4673-6997-8/15/$31.00 ©2015 IEEE 3921 ICASSP 2015



yield significant returns are located into a number of ismat 2.3. Detection Problem

range cells along the radar line-of-sight (LoS) [15]. Insthi idering the sianal model (2 int ted t tab
context, the target can be represented as a linear systém Wl(f,on5| ering the signai mode (2), we are interested 1o esta
Ish whether the received signal contains the extendeetarg

a finite impulse response (i.e., its TIR). In what followsg th . ;
TIR of the extended target of interest is denotechby:(n), return. The pr_oblem can be formulated as the following bi-
nary hypothesis test

wheret(n) is the deterministic TIR structure, which can be
available through track files or other sources of sensind, an Ho: r=Cs+v
« € Cis the unknown reflection factor which accounts for the { (4)
attenuation and delay coefficient of the propagation enviro
ment. We assume thafn) has a support interval of length Due to the Gaussian distributions of the interference aad th
Q, viz.,t(n) = O unlessn € {0,...,Q - 1}. The backscat- clutter vectors, the statistical distributionsroffor a prefixed
tered signal associated with such a (stationary) targéeis t transmit code vectas and a given factow), is
characterized by the convolution of the transmit signahwit
the TIR (assuming the linear environment). rla ~ { Ho: Nc(0,Ry) )

H1 : N(c(CV'TS,RS) ’

Hi: r=a-Ts+Cs+wv

2.2. Signal Model

with R, = E[Css” C*]+ R,. Note that
We consider a monostatic radar system that transmit§’-an HoH H I 1 e I
dimensional fast-time code= [5(0),...,s(N -1)]7 e CV. E[Css"C"] =E[Sec” §7] = SE[cc™ ]S = SRS

At the receive side, the received signal is down-convededt, . ¢ _ V-1 s(n)jT with J,, being theP x M-
the baseband, underwent the pulse matched filter and th%ﬂnensional g;ﬁﬂ matriganéfliﬁed simﬁar to (3). The GLRT

sampled. At the time instanee the received signal associ- detector associated with (4), which coincides with the-opti

ateg V(\;';h ;h.e ext:anded tar.get of mterestéwnh the T(%))’ mum test (according to the Neyman-Pearson criterion, if the
embedded in a clutter environment, can be expressed as phase of« is uniformly distributed in[-7, 7 [), is given by

r(n) = [a-t(n) + c(n)] ® s(n) + v(n), a [18L:
Hi
where® denotes the convolution operato(,) denotes the lwr?> 2 7, (6)
clutter impulse response (CIR), an@n) is the filtered sam- Ho

ple of the signal-independentinterference (such as njaise,  yith 5, being the detection threshold set according to a desired
mers, co-channel interference, etc.). Ldt=Q+ N -1  |evel of probability of false alarm®;,) andw = R;'T's de-
denote the number of received samples. Collecting all the otyotes the receive filter associated with the above GLRT de-

servation samplegr(n)}.," in the observation vectar = tector. In light of the definition ofv, the SINR of the receive
[7(0),...,7(M -1)]" ¢ CM, we have filter output can be expressed as
r=a-Ts+Cs+wv, (2) SINR(s) = p* = s"TH R Ts = w" R;'w.  (7)

with T = Zg;()l t(n)J, andC = Zﬁj\m ¢(n)J,, being the The detection probability’; for the non-fluctuating target and

TIR and the CIR matrices, respectively; and the maffix ~ given valuePy, can be expressed as [19]:

denotes thé/ x N-dimensional shift matrix given by
Py = Q(\/§|Ox|p,\/—21nPfa), (8)

whereQ(-, -) denotes the Marcum® function of order. Note
Herein, the vectow = [v(0),...,v(M - 1)]7 represents that for a given value of’;,, the probability of detectio®;
the interference vector. We assume tlais a (circularly  is a monotonically increasing function of the SINR (i,6%).
symmetric complex) Gaussian vector with zero-mean and th€onsequently, in the following we deal with the waveform
covariance matrixR, = E[vv']. Let the clutter vectoe  design via maximizing the SINR in (7).
be defined ag = [c¢(-N +1),...,c¢(M - 1)]T € CF with
P =M + N -1. In the following, we modet as a (circularly 3. TRANSMIT CODE DESIGN
symmetric complex) zero-mean Gaussian random vector with
covariance matri2. = E[cc'], thatis,c ~ N'c(0,R.) [16].  The performance of the GLRT detector (6) is a monotoni-
Note that clutter and interference covariance matricesige cally increasing function of the SINR. Therefore, the traits
sumed a priori known exploiting cognitive paradigms that re code design problem can be formulated as the following con-
sort to geographical, meteorological, and previous scans i strained optimization problem

formation [3, 5, 17]. Finally, the vectoisandc are supposed

statistically independent. max s"T"(SR.S" + R,)"'Ts 9

Jn(gl,éz) =5glyg2, 01 € {1,...,M},£2 € {1,...,]\7}. 3)
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whereC denotes the desired constrained set (to be discuss&dl. PAR Constrained Problem
in Section 3.1). The problem (9) is non-convex and we devis
a novel cyclic method to tackle it. First consider the follog

proposition which gives an equivalent for the above problem

fet us now focus on problem (9) whéraccounts for both an
energy and a PAR constraint given by

Proposition 1. Lety ¢ CM*! be an auxiliary vector. Then, _max ls(n)?
(9) can be equivalently cast as the following minimization PAR(s) = MW <, (18)
~ IS
min  y”Ry, (10) N
Ysec . where( denotes the desired PAR level. In such case, we have
st ylu=1, the following version of (16)

T 0 sHTH ) " i

whereu = [1 037,1]7, R 2 » |andé min  s"Qs+2R(b" s), (19)
Ts R,+SR.S s ) )

is sufficiently large such thak > 0. st |s|®=N, max [|s(n)]"<C.

The problem (10) is still non-convex and the idea is to o ) )
cyclically solve it with respect to (w.r.ty ands. For fixeds, ~ 1h€ above problem, which is a quadratically constrained

the solution to the problem (10) is given by [20] quadratic program (QCQP), is NP-hard in general dnod
i solutions to it can be obtained via employing the proposed
y = R u _ (11) method in [22]. Observe that the problem in (19) can be
ui R u equivalently cast as
For fixed y, the optimization in (10) boils down to the ) s
following problem min - §7K s, (20)
; H 2 2
min  y" Ry. (12) st =N, max s(n)f <

Next, we explicitly express the objective function of thelpr b

lem (12) w.rt. s. Lety = [ yIr and observe that the yheres - [s7 1] andK - [ CEI ] For anyy >
terms associated with the sought cadé the objective of b’ 0

(12) can be written as Amax (K), we can reformulate the above problem as

tr{SR.S" y,yl'} + 2R (19 T's). (13)

Note that the first term of (13) implicitly depends en To
obtain an explicit expression w.r4, we consider the identity
STy, = Y,s* with

max s"H s, (22)
St [sl?= N, max [s(m)P <.

with H = uIn,1 — K. The problem in (21) can be tackled

T

0 y2(1) . (M) via the discussed method in [23]. More precisely, the code

Y, = (14)  vectors of the (k + 1) iteration (denoted by**1)) can be
. (k) . . . .
ya(1) ... (M) 0 fyop obtained froms'*’, by solving the optimization problem
Consequently, it can be straightforwardly verified that min |s+D — gk (22)

H _Hy_ . H H. _ T~H * §trD

tr{SRCS Y2Y» } =Ys SRC‘?: y*2 =8 Y2 R.Y ;s s.t. Hs(k+1)H2 =N, max |S(k+1)(n)|2 <,
= sHYQTRc Y, s, (15) n=0,,N-1

where the last equation holds due to the factnhé’tRcYQ > wheres® represents the vector containing the firéten-
0. Finally, the optimization problem (10) for fixaglis equiv-  tries of H 5(*). The optimization problem (22) is a “Nearest-

alentto Vector” problem with PAR constraint. Such PAR constrained
. H H problems can be dealt with using a recursive algorithm pro-
2R(b 16 ) ! . .
'sec 87 Qs+ 2R(b7s), (16) posed in [24] Algorithm 1 summarizes the design procedure.
whereQ = YT R) Y, andb™ =y, 43/ T.
Note that, the cyclic minimization of (10) leads to an iter- 4. NUMERICAL EXAMPLES

ative maximization of the SINR (see [21] for a similar praof)

This increasing property along with the fact that the SINR igh this section, we provide some numerical examples to as-
upper bounded by sess the effectiveness of the devised algorithm. We mainly

_ focus on the detection performance of the system and use the
2 H 1

SINR(s) < [  Amax (T R, T)’ 17) receiver operating characteristic (ROC) of the detecteo-as
result in the convergence of the values of the SINR. ciated with the optimized SINR for the analysis. Besides, we
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Algorithm 1 : Code Optimization Algorithm [rrmmm e e

Setk =0, s = So;

Construct matrixR according to the Proposition 1;
Constructy andY 2, according to (11) and (14), respectively;
Construct andb usingy andY 2, and then obtaidd ;

Solve the problem (22) finding a solutiai®);

Setk = k + 1 and repeat steps 2-5 untiSINR(s®) —
SINR(s*1)| < ¢ for a given¢ > 0. - Unper Beundn it
— Unconstrained

—— Constant-modulus
0.9 LFM

0.8 1 ] 5 10 15 20 2 30 35 40 a5 50

QahwdR

il | Fig. 2: The values of SINR versus iteration number.

Amplitude oft(n

0.1F
PR T L7 . T : T T i
! ? Sample indexp ! 10

Fig. 1: Amplitude of the TIR of a MiG-21 fighter.

study the impact of the PAR constraint on the SINR and the
detector performance.

Throughoutthe simulations, we model the TIR employing -~ ~Upper Bound in [11]
the radar backscattering data of a MiG-21 fighter (see [25] fo " Onconsuanea
details), and set the TIR support interval lengthdo= 17. ; T Lppanmodulus

The sequence amplitude is shown in Fig. 1. We assume a
white interference with variancg® = 1, i.e., R, = I. Asto

the clutter, we consider a homogeneous clutter environment Fig. 3: ROC curves associated with Fig. 2.
sharing an exponentially shaped covariance matrix, winere t

correlation between the clutter scatterers:t and (n')t"

range bins, is given by synthesized waveform in [11], as well as the conventional
LFM. This is due to the fact that our method doesn't suffer

E[c(n)c*(n')] = ngg\n—n’h (23) from the synthesis loss. Other observations related to the

figures reveal that the constant-modulus case enjoys SINR

forn,n’ € {~-N+1,...,M -1}, with 02 = E[|c(n)[*] =1  and P, values closed to those of the unconstrained design.

and parametes,. = 0.9 [16]. As to the transmit code length, This clearly suggests to exploit constant-modulus wave$or
we setN = 20. For the comparison purposes, we also rewhich trades off practical advantages of constant-modulus
port the SINR and the ROC of the linear frequency moduwith a small SINR and detection loss.

2

lated (LFM) waveform, given bysy(n) = e/™2~, for n =
0,...,N — 1. Finally, regarding the stop criterion of the de- 5. CONCLUSION
vised methods, we sét= 107%.

In Fig. 2, the SINR behavior is plotted versus the iterationThe transmit code design has been considered to optimize the
number, for the unconstrained € N, i.e., with just energy detection probability of an extended target in the presefice
constraint) and the constant-modulds< 1) code designs. signal-dependent interference. The target response leas be
As expected, the achieved SINR curves have monotonicalljnodeled with deterministic TIR and an unknown reflection
increasing behaviors and converge. factor. The performance of the GLRT detector has been de-

The ROCs associated with the optimized transmit codetermined by the received SINR. Hence, the design problem
of Fig. 2 are depicted in Fig. 3. Here, we assume a reflectiohas been cast considering the SINR as its figure of merit.
factor with the amplitudéal?> = 2. Note that both figures Moreover, a PAR constraint has been imposed to the trans-
include the upper bound on the SINR values obtained in [11]mit waveform so as to ensure its practical implementation.
This upper bound has been derived in frequency domain fole have devised a novel method, based on the cyclic min-
the unconstrained design. The achieved SINR values assimrization technique, to tackle the highly non-convex desig
ciated with the synthesized (time-domain) code, obtained iproblem. Numerical examples have been provided to show
[11], have also been considered (labeled with achieved SINEhe effectiveness of the proposed method. Specificallg, thi
in the figures). It can be seen that the system employing oyreliminary study has highlighted significant improvensent
devised method significantly outperforms the system wigh thw.r.t. the design methodology in [11] as well as the LFM.
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