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ABSTRACT

Hidden Markov Models (HMMs) are powerful statistical tech-
niques with many applications, and in this paper they are used
for modeling asymmetric threats. The observations generated
by such HMMs are generally cluttered with observations that
are not related to the HMM. In this paper a Bernoulli filter is
proposed, which processes cluttered observations and is capa-
ble of detecting if there is an HMM present, and if so, estimate
the state of the HMM. Results show that the proposed filter
is capable of detecting and estimating an HMM except in cir-
cumstances where the probability of observing the HMM is
lower than the probability of receiving a clutter observation.

Index Terms— Hidden Markov model, detection, estima-
tion, random finite sets, Bernoulli filter.

1. INTRODUCTION

The term asymmetric threat refers to tactics employed by,
e.g., terrorist groups to carry out attacks on a superior op-
ponent, while trying to avoid direct confrontation. Terrorist
groups are elusive, secretive, amorphously structured decen-
tralized entities that often appear unconnected. Analysis of
prior terrorist attacks suggests that a high magnitude terrorist
attack requires certain enabling events to take place.

In this paper terrorist activites are modeled using Hid-
den Markov Models (HMMs). In previous work HMMs have
been shown to provide powerful statistical techniques, and
they have been applied to various problems such as speech
recognition, DNA sequence analysis, robot control, fault di-
agnosis, and signal detection, to name a few. Excellent tu-
torials on HMMs can be found in [1, 2]. The applicability of
HMMs for terrorist activity modeling and other national secu-
rity applications has been illustrated in previous work, see e.g.
[3, 4, 5, 6, 7, 8]. For example, Coffman and Marcus use HMMs
to identify groups with suspicious behaviour [4], and Schrodt
use HMMs for pattern recognition of international crises [3].

A number of different terrorist plan HMMs are proposed
in [5, 6, 7, 8], including models for a truck bombing, a plane
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hijacking, and production of weapons grade material. These
HMMs include multiple paths from plan initiation to plan
completion, following the intuition that there are multiple
ways to, e.g., hijack a plane. An empirical HMM can be con-
structed using available prior information, or with the help
from experienced intelligence analysts [5]. For example, the
HMM for development of a nuclear weapons program (DNWP)
in [7] is gleaned using the open sources [9, 10, 11, 12, 13].

The basic motivation of modeling terrorist activities via
HMMs is twofold. Firstly, carrying out a terrorist activity re-
quires planning and preparations, following steps that form
a pattern. This pattern of actions can be modeled using a
Markov chain. Secondly, the terrorists leave detectable clues
about these enabling events in the observation space. The
clues are not direct observations of the planning and prepa-
rations, but are rather related to them, meaning that the states
in the Markov model are hidden. For example, an observa-
tion of a purchase of chemicals could be indicative of inten-
tions to produce a chemical weapon. However, a purchase of
chemicals could very well be a benign event, which motivates
inclusion of a model of observations that are unrelated to the
HMM. Following the target tracking literature, see e.g. [14],
such observations are here designated as clutter observations.

The problem considered in this paper is to process a se-
quence of observations and detect if there is a terrorist activity
being planned and organized, and if so, what stage of plan-
ning the activity is in. In the next section, we give a formal
problem definition.

2. PROBLEM DEFINITION

Let sk ∈ S denote the HMM state at time tk, where S is a dis-
crete state space withNs states, S = {S1, S2, . . . , SNs

}. Fur-
ther, let tk ∈ T = {0, 1} denote the transition state, defined
as tk = 1 if sk 6= sk−1 and tk = 0 otherwise. The transition
state is important because in the variant of HMMs used here
the observations become available upon state transitions. Let
ζk = (sk, tk) denote the joint variable. For the joint transition
probability π(ζk|ζk−1) = π(sk, tk|sk−1, tk−1) the following
holds

π(ζk|ζk−1) = π(tk|sk, sk−1, tk−1)π(sk|sk−1). (1)
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The HMM state transitions follow a first order Markov chain
with transition probability π(sk|sk−1). For the transition state
the transition matrix is[

0 1
0 1

]
if sk 6= sk−1,

[
1 0
1 0

]
otherwise. (2)

The observations zk ∈ Z are discrete random variables,
where Z is a discrete state space with Nz states, Z =
{Z1, Z2, . . . , ZNz}. With a state dependent probability of
detection

pD(ζk) =

{
pD(sk) ∈ (0, 1) if tk = 1,
0 otherwise, (3)

the HMM generates an observation zk. The observation pro-
cess is defined by the likelihood gs(zk|ζk) = gs(zk|sk).
There are also clutter observations (false alarms) super-
imposed on the true HMM observations. In each time-step,
with probability 0 < pFA < 1 a clutter observation is gen-
erated as a random sample from a process with probability
mass function (pmf) gFA(zk). Thus, at each time step there
are 0, 1 or 2 observations.

Now, consider a sequence of time steps t1 to tN . For some
of the time steps there are observations, for others there are
not (denoted ∅), e.g.:

Time: . . . tk−2 tk−1 tk tk+1 tk+2 . . .
Obs.: . . . zk−2 ∅ ∅ zk+1 ∅ . . .

(4)

The problem considered in this paper is, given a time se-
quence of observations, to determine if there are any time
steps for which an HMM is causing the observations (detec-
tion), and if so estimate what state sk the HMM is in at those
time steps (estimation).

The scope of the paper is limited by the assumption that
there is at most a single HMM whose transition probability
π(·|·) and likelihood h(·|·) are known. Note however that no
assumptions are made regarding the HMM’s existence, nor re-
garding measurement origin (HMM or clutter).

3. RANDOM FINITE SET MODELING

Single target detection and state estimation using cluttered ob-
servations is well studied in the target tracking literature. In
this work we will use Finite Set Statistics (FISST) and Random
Finite Set (RFS) theory to model the problem, specifically the
so called Bernoulli RFSs. A tutorial of random set methods
is given in [15], with in-depth descriptions of FISST and RFS
found in [16]. A tutorial introduction to Bernoulli filters is
given in [17]. In previous work these methods have typically
been applied to problems where both the state and the ob-
servations are continuous random variables, in contrast to the
work here where the states and observations are discrete.

An RFS is a random variable whose realizations are sets
with a finite cardinality (number of elements). The cardinal-
ity, and each element, are all random variables. Specifically, a

Bernoulli RFS X is either an empty set, with probability 1−q,
or has a single element, with probability q. In case there is an
element x, it is distributed over the state space X according
to the probability mass function (pmf) P (x). The FISST prob-
ability density function (pdf) of X is

f(X) =

{
1− q, if X = ∅,
q · P (x), if X = {x} . (5)

The state space for X is ∅ ∪ σ(X ), where σ(X ) is the set of
all singletons {x} such that x ∈ X . A singleton is a set with
cardinality one. For a Bernoulli pdf a set integral is defined as
follows [16],∫

f(X)δX =f(∅) +

∫
f({x})dx (6a)

=1− q +

∫
qP (x)dx = 1, (6b)

and it follows that f(X) as defined in (5) is indeed a proper
pdf. Note that integrals over the discrete random variable x
are sums, e.g.∫

m(x)P (x)dx =
∑
X∈X

m(x = X)P (x = X) (7)

for a function m(x), however for brevity we will use the inte-
gral notation rather than the sum notation.

3.1. HMM state model

The joint HMM state ζk at time tk is modeled as a Bernoulli
RFS Sk. The state space is ∅ ∪ σ(S × T ), where σ(S × T )
is the set of all singletons {s, t} such that s ∈ S and t ∈ T .
The binary random variable εk ∈ {0, 1} models the existence
of the HMM: if εk = 1 the HMM exists at time tk.

3.2. Dynamics model

The dynamics of HMM existence εk are modeled as a first
order Markov chain with transition probability matrix

P ε
k|k−1 =

[
(1− pb) pb
(1− ps) ps

]
. (8)

The probability pb = P (εk = 1|εk−1 = 0) models the prob-
ability of HMM birth, i.e. the probability that at time tk a plan
is initiated. The probability ps = P (εk = 1|εk−1 = 1) is
the probability of HMM survival, i.e. the probability that an
initiated plan is not cancelled. If an HMM is intiated at time
tk the initial pmf is denoted P b

k|k−1(ζ).
The dynamic model of the RFS S is a Markov process with

transition density PS
k|k−1(S|S′),

PS
k|k−1(S|∅) =

{
1− pb, if S = ∅,
pb · P b

k|k−1(ζ), if S = {ζ} , (9a)

PS
k|k−1(S|{ζ ′}) =

{
1− ps, if S = ∅,
ps · π(ζ|ζ ′), if S = {ζ} . (9b)
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3.3. Observations

Let Zk be the RFS observation at time tk. Let Zk denote all
such observation from time t1 to tk, Zk = {Z1,Z2, . . . ,Zk}.
If εk = 0 then Zk = Ck and if εk = 1 then Zk is the union
of two independent RFS,

Zk = Wk ∪Ck, (10)

where Wk is HMM generated observations and Ck is clut-
ter observations. The clutter observations are modeled as a
Bernoulli RFS with FISST pdf

κ(Z) =

{
1− pFA, if Z = ∅,
pFA · gFA(z), if Z = {z} . (11)

At timesteps for which an HMM exists (εk = 1, Sk = {ζk}),
the HMM generated observations are modeled as a Bernoulli
RFS with FISST pdf

η(Z|{ζ}) =

{
1− pD(ζ), if Z = ∅,
pD(ζ) · gs(z|ζ), if Z = {z} . (12)

The observation likelihood function is denoted ϕ(Z|S) and
has two forms: one for S = ∅ and one for S = {ζ}. In the
former case we have the FISST pdf ϕ(Z|∅) = κ(Z), and in the
latter case the FISST pdf is

ϕ(Z|{s}) =
∑
W⊆Z

η(W|{s})κ(Z\W), (13)

where \ denotes set difference. For both the clutter observa-
tions and the HMM observations the set can be either empty or
singletons, and thus the union (10) can have zero, one or two
elements. The summation then has three different cases

ϕ(Z|{ζ}) = (14) η(∅|{ζ})κ(∅) if Z = ∅,
η(z|{ζ})κ(∅) + η(∅|{ζ})κ(z) if Z = {z},
η(z1|{ζ})κ(z2) + η(z2|{ζ})κ(z1) if Z = {z1, z2}.

4. BERNOULLI FILTER

In this section, using the models defined above, we propose
a filter within the RFS framework such that a joint estimate
of the probability of HMM existence and of the HMM state
distribution (pmf) are obtained. The derivations are omitted
due to page length restrictions.

Assume that the posterior FISST pdf fk−1|k−1(Sk−1|Zk−1)
is known. The posterior FISST pdf at time step tk−1 for the
Bernoulli RFS Sk−1 is specified by the posterior probability
of HMM existence and the posterior pmf of the joint HMM
state of ζk−1,

qk−1|k−1 =P (|Sk−1| = 1|Zk−1), (15a)

Pk−1|k−1(ζ) =P (ζk−1|Zk−1). (15b)

The Bernoulli filter (BF) propagates both quantities over time
using a prediction equation

fk|k−1(Sk|Zk−1) = PS
k|k−1(Sk|∅)fk−1|k−1(∅|Zk−1)

+

∫
PS
k|k−1(Sk|{ζ})fk−1|k−1({ζ}|Zk−1)dζ (16)

and a correction equation

fk|k(Sk|Zk) =
ϕ(Zk|Sk)fk|k−1(Sk|Zk−1)

f(Zk|Zk−1)
, (17)

where the FISST likelihood f(Zk|Zk−1) is defined as

f(Zk|Zk−1) =ϕ(Zk|∅)fk|k−1(∅|Zk−1) (18)

+

∫
ϕ(Zk|{ζ})fk|k−1({ζ}|Zk−1)dζ.

The predicted probability of HMM existence and the predicted
joint HMM state pmf are

qk|k−1 =pb(1− qk−1|k−1) + psqk−1|k−1, (19a)

Pk|k−1(ζ) =
pb(1− qk−1|k−1)

qk|k−1
P b
k|k−1(ζk) (19b)

+
psqk−1|k−1

∫
π(ζk|ζ)Pk−1|k−1(ζ)dζ

qk|k−1
.

The correction has three different cases: for Zk = ∅ we have

qk|k =
1−∆1

k|k−1

1− qk|k−1∆1
k|k−1

qk|k−1, (20a)

Pk|k(ζ) =
1− pD(ζ)

1−∆1
k|k−1

Pk|k−1(ζ), (20b)

∆1
k|k−1 =

∫
pD(ζ)Pk|k−1(ζ)dζ, (20c)

for Zk = {z} we have

qk|k =
1−∆k|k−1

1− qk|k−1∆k|k−1
qk|k−1, (20d)

Pk|k(ζ) =
1− pD(ζ)

1−∆k|k−1
Pk|k−1(ζ) (20e)

+
1− pFA

pFAgFA(z)

pD(ζ)gs(z|ζ)

1−∆k|k−1
Pk|k−1(ζ),

∆k|k−1 =∆1
k|k−1 −∆2

k|k−1, (20f)

∆2
k|k−1 =

1− pFA

pFAgFA(z)
Gs

k|k−1(z), (20g)

Gs
k|k−1(z) =

∫
pD(ζ)gs(z|ζ)Pk|k−1(ζ)dζ, (20h)

and for Zk =
{
z1, z2

}
we have qk|k = 1 and

Pk|k(ζ) =
gFA(z1)pD(ζ)gs(z

2|ζ)Pk|k−1(ζ)

gFA(z1)Gs
k|k−1(z2) + gFA(z2)Gs

k|k−1(z1)

+
gFA(z2)pD(ζ)gs(z

1|ζ)Pk|k−1(ζ)

gFA(z1)Gs
k|k−1(z2) + gFA(z2)Gs

k|k−1(z1)
. (20i)
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pD\pFA 0.75 0.50 0.25 0.01
0.25 10.3 10.6 9.7 10.5
0.50 10.1 10.4 10.1 10.2
0.75 9.8 10.3 10.3 10.2
0.99 10.4 10.5 9.9 9.1

Table 1. HMM existence: false alarm
rates [%]

pD\pFA 0.75 0.50 0.25 0.01
0.25 86.9 64 58.8 82.4
0.50 58.2 76.1 84 93.6
0.75 83.9 93.5 96.8 97.9
0.99 99.2 99.8 99.9 99.9

Table 2. HMM existence: detection rates
[%]

pD\pFA 0.75 0.50 0.25 0.01
0.25 6.9 10.7 20.5 41.4
0.50 38 50.6 55.1 62.6
0.75 66.6 73.6 75.2 76.7
0.99 94.9 97 97.6 98.3

Table 3. HMM state estimation: % time
steps where ŝk|k = sk

5. SIMULATION RESULTS

Intelligence observation data of the kind considered here is
inherently secret, and for this reason results for real obser-
vation data records are unavailable, and could not be pub-
lished if they were. Instead we present results for simulated
data. Multiple different HMMs have been simulated, see [5,
6, 7, 8] for details. The results for the different HMMs are
comparable. Here we will highlight results from a repre-
sentative HMM that has 27 states and models the production
of weapons grade material (PWGM) [8]. The birth and sur-
vival probabilities were set to pb = 0.01 and ps = 0.99.
We have tested different probabilities of detection pD(ζ) =
pD ∈ {0.25, 0.50, 0.75, 0.99} and probabilities of false alarm
pFA ∈ {0.01, 0.25, 0.50, 0.75}.

For each pD, pFA pair, the proposed BF was evaluated as
follows. First we simulated 105 clutter observations and de-
termined which existence probability thresholds τ ∈ [0, 1]
that gave 10% empirical false alarm rates. Next the PWGM-
HMM was simulated 1000 times; in each simulation HMM
birth time, state transitions, HMM observations, and clutter
observations were all randomly simulated. In each time step
tk, if qk|k > τ a maximum a posteriori (MAP) HMM state
estimate was computed,

ŝk|k = arg max
s∈S

Pk|k(s), (21)

where Pk|k(s) =
∫
Pk|k(s, t)dt is the marginal posterior dis-

tribution. We did not evaluate estimates of the transition state
tk, because knowing the HMM state sk is more important
than knowing whether or not the HMM just transitioned to that
state.

In Table 1 empirical false alarm rates are given, i.e. for
εk = 0 the % time steps tk for which qk|k > τ . In Table 2
empirical detection rates are given, i.e. for εk = 1 the %
time steps tk for which qk|k > τ . In Table 3 we give, for
εk = 1 and qk|k > τ , the % time steps for which ŝk|k = sk.
By varying the existence probability threshold τ between 0
and 1 receiver operating characteristic (ROC) curves are ob-
tained, see Figure 1. Table 1 confirm that existence proba-
bility threshold indeed can be computed using sequences of
clutter observations. As expected, it is more difficult to esti-
mate the existence of an HMM when pD is lower and pFA is
higher, this can be seen in both Table 2 and Figure 1. A com-
parison shows that the rates in Table 3 are lower than the rates
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Fig. 1. Receiver Operating Characteristics (legend: pD/pFA)

in Table 2. This is a result of missed detections: a missed de-
tection makes it more difficult for the BF to estimate the state
transition, and subsequently the estimated state ŝk|k is incor-
rect for a couple of time steps following the missed detection.

In a MATLAB implementation run on a desktop computer
with two 2.66 GHz processors and 4 GB RAM, the median
time for a single iteration (prediction and correction) is 0.5ms,
indicating that the proposed BF is capable of real-time perfor-
mance.

6. CONCLUSIONS AND FUTURE WORK

The proposed Bernoulli filter approach to joint detection and
estimation of HMMs is shown to give good results except in
very adverse conditions (low probability of detection and high
probability of false alarm). In future work we also intend to
perform an analysis of the detectability of HMMs whose ob-
servations are submerged in clutter observations – what are
the bounds on the error probabilities, and how do these relate
to the properties of the underlying HMM? These questions
are important for determining under which circumstances one
can expect the problem to be solvable with reasonable perfor-
mance.

3914



7. REFERENCES

[1] L. Rabiner and B.-H. Juang, “An introduction to hidden
Markov models,” IEEE ASSP Magazine, vol. 3, no. 1,
pp. 4–16, Jan. 1986.

[2] L. Rabiner, “A tutorial on hidden Markov models and
selected applications in speech recognition,” Proceed-
ings of IEEE, vol. 77, no. 2, pp. 257–286, Feb. 1989.

[3] P. Schrodt, “Pattern recognition of international crises
using hidden Markov models,” in Political Complex-
ity: Nonlinear Models of Politics, D. Richards, Ed., pp.
296–328. University of Michigan Press, Ann Arbor, MI,
USA, 2000.

[4] T. Coffman and S. Marcus, “Dynamic classification of
groups through social networks and HMMs,” in Pro-
ceedings of IEEE Aerospace Conference, Big Sky, MT,
USA, Mar. 2004, pp. 3197–3205.

[5] S. Singh, H. Tu, J. Allanach, J. Areta, P. Willett, and
K. Pattipati, “Modeling threats,” IEEE Potentials, pp.
18–21, Aug./Sept. 2004.

[6] H. Tu, J. Allanach, S. Singh, K. Pattipati, and P. Wil-
lett, “Information integration via hierarchical and hy-
brid bayesian networks,” IEEE Transactions on Sys-
tems, Man, and Cybernetics–Part A: Systems and Hu-
mans, vol. 30, no. 1, Jan. 2006.

[7] S. Singh, W. Donat, H. Tu, J. Lu, K. Pattipati, and P. Wil-
lett, “An advanced system for modeling asymmetric
threats,” in Proceedings of 2006 IEEE International
Conference on Systems, Man, and Cybernetics, Taipei,
Taiwan, Oct. 2006.

[8] S. Singh, H. Tu, W. Donat, K. Pattipati, and P. Willett,
“Anomaly detection via feature-aided tracking and hid-
den Markov models,” IEEE Transactions on Systems,
Man, and Cybernetics–Part A: Systems and Humans,
vol. 39, no. 1, pp. 144–159, Jan. 2009.

[9] F. Barnaby, How to Build a Nuclear Bomb and Other
Weapons of Mass Destruction, Nation Books, New
York, NY, USA, 2004.

[10] R. Paternoster, “Nuclear weapon proliferation indica-
tors and observables,” Tech. Rep. LA-12430-MS, Los
Alamos National Laboratory, Dec. 1992.

[11] F. Settle, “Nuclear chemistry, nuclear proliferation,” .

[12] L. Spector and J. Smith, Nuclear Ambitions: The Spread
of Nuclear Weapons 1989–1990, Westview Press, Boul-
der, CO, USA, 1990.

[13] Office of Technology Assessment U.S. Congress,
“Technologies underlying weapons of mass destruc-
tion,” Tech. Rep. OTA-BP-ISC-115, U.S. Printing Of-
fice, Washington, DC, USA, Dec. 1993.

[14] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and
data fusion, a handbook of algorithms, YBS Publishing,
2011.

[15] K. Granström, C. Lundquist, F. Gustafsson, and
U. Orguner, “Random Set Methods: Estimation of Mul-
tiple Extended Objects,” IEEE Robotics and Automation
Magazine, vol. 21, no. 2, pp. 73–82, June 2014.

[16] R. Mahler, Statistical Multisource-Multitarget Informa-
tion Fusion, Artech House, Norwood, MA, USA, 2007.

[17] B. Ristic, B.-T. Vo, B.-N. Vo, and A. Farina, “A Tutorial
on Bernoulli Filters: Theory, Implementation and Ap-
plications,” IEEE Transactions on Signal Processing,
vol. 61, no. 13, pp. 3406–3430, July 2013.

3915


