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ABSTRACT

The detection of abrupt changes in signals that are ob-

served by wireless sensor networks (WSN), is an important

research area with potential applications, e.g., in fault de-

tection, prediction of natural catastrophic events, and speech

segmentation. We consider the distributed robust detection

of changes in the parameters of autoregressive (AR) models.

Our method is robust on a single sensor level by suppressing

the effect of outliers and impulsive noise via a robustified dis-

tance metric between a long-term and a short-term AR model.

The new distributed change detector works without a fusion

center and incorporates a weighting based on signal-to-noise-

ratio (SNR) information, to ensure that every node will, at

least, maintain its single node performance. A Monte-Carlo

simulation study is provided which compares the proposed

detector to a centralized version, in terms achievable detec-

tion rates and mean detection delay. Furthermore, an applica-

tion example of distributed voice activity detection for a noisy

speech signal is given.

Index Terms— Change Point, Distributed Detection, Ro-

bust, Voice Activity, Autoregressive Process

1. INTRODUCTION

The detection of abrupt changes has received considerable at-

tention and has been successfully applied to areas as diverse

as, fault detection and monitoring, quality control, predic-

tion of natural catastrophic events, and speech segmentation

[1, 2, 3, 4]. E.g., in industrial monitoring, the early detection

of changes in the operating conditions of a machine allows

for interventions that enhance safety and reduce costs. In the

last few years, the increased availability of small low-cost

sensors that are equipped with a battery, or secondary power

supply, a processing unit and a radio for wireless communi-

cation has created the demand for detecting changes by use

of wireless-sensor-networks (WSN) [5, 6]. Only recently,

fully distributed change detection methods, which do not
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require a fusion center (FC) but rely on local neighborhood

communication between sensors of an ad-hoc WSN were

proposed [6]. These methods are less sensitive to a single

node failure and are scalable to larger network sizes, since the

bottleneck transmission to a single point is avoided [7, 8]. A

key difficulty in the detection of changes is that these must be

extracted from available measurements that contain a mix of

information, which is only partly related to changes, and also

contains perturbations, such as stationary or non-stationary

impulsive noise and outliers. Robust signal processing meth-

ods [9], are able to provide increased reliability in case of

impulsive noise and outliers while maintaining near opti-

mality under nominal conditions. Distributed robust change

detection has not been considered, up to now.

Contributions: We researched the detection of abrupt changes

in signals that are observed by a WSN, and developed an al-

gorithm to robustly detect changes in the parameters of AR

models. Speech and seismic signals are potential applications

[2, 3]. Different SNR and outlier contaminations at each

sensor were taken into account in the design of the algorithm.

On the one hand, our proposed algorithm is designed to be

robust against outliers and impulsive noise on a single node

level by robustifying [3] which detects non-additive changes

in AR models. On the other hand, we introduce a cooperative

distributed scheme, through which nodes with a low SNR or

many outliers can achieve a performance which they would

not be able to, without cooperation, while high SNR nodes do

not experience a performance degradation, due to a proposed

weighting scheme. A Monte-Carlo simulation study is pro-

vided which compares the proposed detector to a centralized

approach which requires a FC, in terms of detection rates and

mean detection delay for different noise and outlier scenarios.

Furthermore a distributed voice activity detection example for

a noisy speech signal is provided.

Organization: Section 2 briefly revisits single sensor change

detection for an AR process, while Section 3 presents the

proposed distributed change detector. Section 4, provides a

Monte-Carlo simulation study that compares the proposed

method to a centralized version which uses a FC. This section

also provides a voice activity detection application for a noisy
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speech signal. Section 5 concludes the paper.

2. SINGLE SENSOR CHANGE DETECTION FOR AN

AUTOREGRESSIVE PROCESS

Assume an AR process

Xn +

P
∑

p=1

apXn−p = Zn, (1)

where P is the model order, Zn is zero-mean independent

and identically distributed (i.i.d.) Gaussian process with vari-

ance σ2 < ∞, ap, p = 1, . . . , P are the AR-parameters,

and the roots of A(z) = 1 + a1z
−1 + . . . + aP z

−p lie in-

side the unit circle. Let a signal of length N be described

by the AR-parameter vector a0 for n < ncp, where ncp is

the unknown change point, while for n ≥ ncp the parameters

abruptly change to a1.

A fundamental change detection approach is the cumulative

sum (CUSUM) algorithm which compares the integration of

the signals to a threshold [3]. To detect changes in an AR pro-

cess, the so-called divergence-algorithm [1, 2] compares two

AR models based on a long-term (LT) and a short-term (ST)

observation window.The LT-model uses a growing memory

while the ST-model is based on a sliding window of fixed size

L. The distance metric is the cross-entropy between the con-

ditional distributions of these two models, which assuming

(1) yields

sn =
1

2

(

2
ẑn,LT ẑn,ST

σ̂2
ST

−

[

1 +
σ̂2
LT

σ̂2
ST

]

×
(ẑn,LT )

2

σ̂2
LT

+

[

1−
σ̂2
LT

σ̂2
ST

])

,

(2)

where ẑn,LT/ST = xn−
∑P

p=1 âp,LT/STxn−p are the LT- and

ST-innovations estimates with standard deviations estimates

σ̂LT and σ̂ST , respectively. The CUSUM is defined by

Sn = Sn−1 + sn + δ, (3)

where δ is a constant factor assigned a priori to ensure posi-

tive drift of the CUSUM before and a negative drift after the

change point [3, 2]. The Hinkley-rule [10]

max
r:L<r≤n

Sr − Sn > λ, (4)

where λ is the detection-threshold, localizes a change in the

drift, and a change point (CP) is the value r maximizing (4).

3. DISTRIBUTED ROBUST CHANGE POINT

DETECTION FOR AN AUTOREGRESSIVE PROCESS

Consider a distributed network consisting of K nodes. A set

of nodes connected to node k (including k) is called its neigh-

borhood Nk, and the number of nodes connected to k is the

degree dk. All parameters referring to node k are indicated

with the superscript (k).

3.1. Single sensor robust change detection
In the first step of our approach, each node locally tests for

changes. In the presence of impulsive noise or additive out-

liers (AO), the change detector based on (2) breaks down. We

thus propose:

s(k)n =
1

2
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(5)

In (5), we estimate the AR parameters with the robust and

computationally efficient median-of-ratios estimator (MRE)

[11, 9], which uses robust autocorrelation function estimates

based on sample medians. Innovations standard devia-

tions estimates are robustly estimated with the normalized

median-absolute-deviations scale estimator [12, 9]. Outliers

in ẑ
(k)
n,LT/ST are suppressed, e.g. by applying Tukey’s ψ(x)-

function

ψ(x) =

{

x− 2 x3

u2

Tuk

+ x5

u4

Tuk

|x| ≤ uTuk

0, |x| > uTuk

. (6)

3.2. Distributed robust change detection
Change detection with sensor networks can be highly use-

ful, for example in distributed speech processing and seis-

mic monitoring. While robustness at a single sensor level is

crucial to success of any robust change detector, there exist

scenarios that cannot be resolved without cooperation. We

distinguish four cases:

• Case 1: y(k) = x(k).

• Case 2: y(k) = x(k) + Φ(k), with Φ(k) being a sparse

vector with large values.

• Case 3: y(k) = x(k) + v(k), with v being additive white

Gaussian noise (AWGN).

• Case 4: y(k) = x(k) + v(k) +Φ(k).

The boldface-letters represent 1×N row-vectors. Distributed

robust change detection enables nodes to detect change

points, even if, e.g., in Case 2, the number of non-zero entries

of Φ(k) exceeds the breakdown point [9] of the robust estima-

tor, or if the sensor operates in a low SNR regime (Case 3).

We next describe our proposed distributed method: Let each

node take a measurement and compute s
(k)
n based on (5).

Next, S
(k)
n is computed in a distributed fashion:

S(k)
n =

∑

l∈Nk

c(l,k)S
(k)
n−1 +

∑

l∈Nk

c(l,k)s(k)n + δ, (7)

where c(l,k) are real, non-negative entries of the K × K
weighting matrix C such that c(l,k) = 0 if l /∈ Nk. The

c(l,k) define how data is weighted within a neighborhood. One

could use uniform weights c(l,k) = 1
dk

for all l ∈ Nk. If SNR

information is available, e.g., via parametric estimation of the
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Nodes 1 2 3 4 5 6 7

SNR -6dB -6dB -6dB 0dB 10dB 10dB 6dB

AO 0.01 0.1 0.1 0.1 0.02 0.01 0

Table 1. SNR of the AWGN and fraction of the samples that

is contaminated with additive outliers for each of the nodes of

the WSN that is depicted in Fig. 2.

AWGN variance σ̂
(k)
v , we propose to additionally constraint

c(l,k) = 0 for all l ∈ Nk which have SNR(l) < SNR(k) and

c(l,k) ∼ SNR(l), otherwise. The proposed change detector is

summarized below:✬

✫

✩

✪

Step 1: Initialization of â
(k)
L,LT/ST , σ̂

(k)
L,LT/ST ,

and σ̂
(k)
v ;

Exchange σ̂
(k)
L,LT/ST and σ̂

(k)
v ;

Set weights c(l,k) for l ∈ Nk;

Step 2: For each n > L:

Compute robust local estimates â
(k)
n,LT/ST ,

σ̂
(k)
n,LT/ST and ẑ

(k)
n,LT/ST ;

Weight residuals using (6) with

uTuk = uσ̂
(k)
n,LT/ST ;

Compute robust local CUSUM s
(k)
n by (5);

Exchange S
(k)
n−1 and s

(k)
n with Nk;

Compute S
(k)
n by (7);

If max
r:L<r≤n

S
(k)
r − S

(k)
n > λ

Set estimated change point equal r;
Set n = 0 and re-initialize algorithm;

4. NUMERICAL EXPERIMENTS AND REAL

WORLD APPLICATION

In this section, we investigate the performance of the pro-

posed algorithm using simulated and real data. For all ex-

amples L = 200, λ = 70, δ = 1.5, σz = 1, and uTuk =
2.5σx. The AO were generated from a zero-mean Gaussian

distribution with variance 5σ2
z . In all cases, the change of an

AR(3) process from parameters a0 = [1, 0.95, 0.25, 0.06] to

a1 = [1, 0.3, 0.35, 0.04], is considered.

4.1. Single sensor robust change detection for an AR(3)
We first illustrate the single sensor robustness of our algo-

rithm. The top graph in Fig. 1 shows a clean signal realiza-

tion (Case 1) ofN = 2000 samples. The bottom graph shows

the same signal, but now contaminated with 1 % AO (Case

2). The solid black line indicates the CP at ncp = 1001. The

dash-dotted line shows the estimates by [3], while the green

dashed line represents our algorithm that uses (5). points.

4.2. Distributed and robust change detection for an AR(3)
We next consider a WSN of K = 7 nodes, as depicted in

Fig.2. We assume that the same signal is measured without

delay at all nodes and that all nodes have perfect connectivity.

However, each sensor has to deal with a different amount of

Fig. 1. Single sensor robustness for AR(3) with CP, as indi-

cated by the solid black line. (top) clean data. (bottom) 1 %

additive outlier. Black dash-dotted line indicates estimated

CP with divergence CUSUM detector [3], while green dashed

line indicates proposed robust change detector.

1 3

2

4 5

6

7

Fig. 2. Wireless sensor network configuration.

AO and AWGN of different variances (Case 4), see Table 1.

In Fig. 3, the change detection result is shown exemplary for

nodes 3 (top) and 5 (bottom).

4.3. Monte-Carlo simulation study

Based on the WSN displayed in Fig. 2 and the parameter-

settings above, we present network-wide mean results that are

averaged over 200 Monte-Carlo experiments. Performance

is measured by the true-positive-rate (TRP) and the false-

positive-rate (FPR) as in [4]. We define NTA as the total

number of alarms and NCD as the total number of correct

detections over all thresholds. Ncp is the number of actual

change points per threshold, which is in our case Ncp = 200.

TPR is defined as NCD

Ncp
and FPR as NTA−NCD

Ncp
. In Fig. 4, we

plot the network wide mean-delay over the specified range of

thresholds. In Fig. 5 we present the mean TPR and FPR.

4.4. Real data example: voice activity detection for a

noisy speech signal

We now show how the proposed algorithm is used for the

segmentation of a speech signal into active speech and non-

speech parts. K = 3 nodes that could be, e.g., mobile-phones,

that cooperate in an ad-hoc network, measure a speech sig-

nal. The speech is affected by AWGN and all the nodes are

3908



Fig. 3. AR(3) with CP, as indicated by the solid black line.

(top) Node 3 with SNR=-6dB and 10 % AO. (bottom) Node

5 with SNR=10dB and 2 % AO. The dash-dotted black line

shows estimated CP without cooperation. The green dashed

line depicts results of the proposed distributed detector for

uniform weights, while the red dashed line incorporates the

proposed SNR-based weighting.

additionally disturbed by impulsive noise (10 % AO). Note

that, in this setting, each sensor receives a delayed and fil-

tered version of the signals based on a room-impulse-response

with a reverberation time of T60 = 0.5 seconds. The sig-

nals consist of 35,000 samples using a sampling-frequency

of 16 kHz. We set λ = 100, δ = 1.2. For ck,l we again

used uniform weights. Solutions for one node are depicted

in Fig. 6. Changes are marked by hand and indicated by

solid black-lines. Estimated changes are indicated with green

dashed lines. In the top graph, results for a single node with-

out cooperation are shown. Changes are correctly detected,

however, the algorithm leads to 4 false-alarms which results

in FPR = 0.4. In the bottom graph, the nodes cooperate, as

proposed in our algorithm which yields FPR = 0.2.

Fig. 4. Network-wide mean change detection delay, averaged

over 200 Monte-Carlo experiments.

Fig. 5. Network-wide mean true-positive-rate (TRP) and

false-positive-rate (FPR), averaged over 200 Monte-Carlo ex-

periments.
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Fig. 6. Noisy speech signal observed by a WSN. (top) Re-

sult of robust change detection at a single node without co-

operation. (bottom) proposed robust and distributed change

detection at the same node.

5. CONCLUSION

Our work addressed the problem of detecting abrupt changes

of signals that are observed by a WSN. We considered the

case of non-additive changes autoregressive models and trans-

formed the divergence CUSUM algorithm to a distributed and

robust framework. Simulations showed that the performance

can be increased in realistic situations, e.g., when some

sensors operate in a low SNR regime, or are contaminated

severely by outliers. We also showed how the proposed al-

gorithm may be useful for segmentation of speech-signals

that are measured by a sensor network. The preliminary re-

sults indicate that the proposed algorithm may be useful in

voice activity detection for distributed speech enhancement.

Future work inclusdes seeking adaptive cooperative rules for

the selection of δ and λ and exploring further change point

detection algorithms.
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