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ABSTRACT distributions depending on whether hypothelisor H; is
. true (assuming binary hypothesis testing). The objecsve i

The quickest detection of short-term voltage instability i S . ; .
g . : to minimize the detection delay subject to an error probabil
a smart grid is considered. The problem is formulated as

; ) . . . constraint. Voltage instability detection can be fotatu
a binary sequential composite hypothesis testing where th : . : ; .
g : . ed as a sequential composite hypothesis testing problem wit
null hypothesis is a non-stationary process with an unknown ~ . . o L
. : L nonidentical distributions. Specifically, the Lyapunoypex
exponentially decaying mean and the alternative is a non-

. . oo . hents under both hypotheses are unknown, and the observa-
stationary process with an unknown exponentially increasi

mean. A sequential generalized likelihood ratio test (SGLR tions are non-stationary random processes with either-expo

. ; entially decaying or exponentially increasing expeotei
IS proposed and a}nalyzed.. Itis shown that the proposed S We develop a sequential test for the detection of the p-
GLRT is asymptotically optimal.

resence of unknown positive Lyapunov exponents. Referred
Index Terms— Sequential hypothesis testing, sequentiako as sequential generalized likelihood ratio test of exymis
generalized likelihood ratio test, voltage instabilitydpunov  (SGLRT-exp), this test is shown to be both consistent and

exponents. asymptotically optimal in the sense that the probabilitgef
ror diminishes as the number of samples increases. Specifi-
1. INTRODUCTION cally, let the maximum Lyapunov exponent be denoted by
and two hypotheses b, : \; < 0 andH; : A\; > 0 cor-
1.1. Voltage Stability responding to stable and instable states, respectivelghiiVi

a Bayes cost formulation of assigning cost one to either type
\oltage stability in a power system refers to the abilityleét  of error and cost > 0 to each observation, the performance
system to maintain the load voltage within specified opegati of SGLRT-exp is analyzed. Moreover, asymptotic ¢agpes
limits. The voltage stability problem is classified into sho to zero) lower bound on the performance of any sequential
term and long-term stability phenomena [1]. Short-ternt-vol test within this formulation is established which shows the
age instability phenomenon is mainly caused by heavy usaggymptotic optimality of the SGLRT-exp.
of reactive power by electronically controlled loads and in
duction motors_. . i 1.3. Related Work

Short-term instability can be characterized by the system

Lyapunov exponents [2]. In particular, short-term voltage  The classic sequential hypothesis testing problem was pio-
stability occurs if one of the Lyapunov exponents is positiv neered by Wald [4]. Wald showed that the sequential prob-
To detect voltage instability, it is therefore natural tews-  ability ratio test (SPRT) is optimal in terms of minimizing
ther the Lyapunov exponents or a proxy of Lyapunov expothe expected sample size subject to given error probability
nents as the indicator for instability. Existing techniges- constraints. The composite hypotheses testing problem is
timate Lyapunov exponents (or related statistics) fromspha fundamentally more difficult than simple hypothesis tegtin
measurement unit (PMU) data or state estimates [2, 3]. Theggoblem. The sequential generalized likelihood ratio (8st
existing techniques are heuristic and do not provide arsl lev GLRT) was first studied by Schwartz for one-parameter expo-
of performance guarantee. nential family with i.i.d. observations [5]. Adopting a diar
Bayesian formulation as in this paper, Schwartz showed that
SGLRT is asymptotically optimal whenapproaches to zero.
A refinement of [5] was studied by Lai [6, 7] which showed
In this paper, we study voltage instability detection based that for a multivariate exponential family, SGLRT asymptot
classic sequential hypothesis testing theory. In theidass ically optimizes the Bayesian cost. A more general setting
quential hypothesis testing [4], the decision maker aims tavhere a set of different experiments are available and the ob
infer the state of an underlying phenomenon from an i.i.€. seservations depend on the chosen experiment was studied by
quence of observationd(¢)},>1 drawn from two different Chernoff [8]. Another well-studied test for sequential com
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1.2. Main Results



posite hypothesis testing is the sequential adaptiveltiget  1,2,..., N, e; < [|[Vina — Vim—1)all < €2. The maximum
ratio test (SALRT) [9-11]. The advantage of SALRT is its Lyapunov exponent at timgA, is obtained as follows [3].
computationally more efficient statistics. The disadvgata Fork > N

of SALRT is that poor early estimates can never be revised W v I

even if a large number of observations are available. All oyp(NEAN,) = I _ Lo kEma — (kim DA - ()

these classic results assume i.i.d. observations overthiate [[Vina — V(m—l)AH

is different from the specific non-stationary sequentiat te
formulated in this paper. Let NA)A; be denoted by andk — N be denoted by.

The optimality of SPRT for sequential hypothesis testmgl\lloreover, letX (¢) denote the statistic obtained from mea-

with non-stationary observations was shown in [12]. The opSurements (the right hand side of equation (3)), referrexsto

timal SPRT in the non-stationary environment requires {aboS@Mple observation. Taking into account the effect of noise
rious calculation of a sequence of thresholds. The asym@" the value of sample observation, the sample observation-
totic optimality of SPRT with approximated thresholds, un-S ?f the power system at timeare in the form ofX(¢) =

der certain assumptions on log-likelihood ratios, was show® . + 1(t), wheren(t) is assumed to be the normally dis-

in [13, 14]. Theses assumptions, however, do not apply to thisibuted noise. The parame‘{édetermi_nes the stability of the
voltage instability detection problem considered in thiper. system such that fat < 0 the system is stable and otherwise

The Lyapunov exponents method in power system shorf'€ System is instable.
term voltage instability was proposed in [2]. An online shor
term voltage stability monitoring algorithm was introddce 2.2. Sequential Voltage Instability Testing
in [3], where a model-free approach is developed based on
proxy of maximum Lyapunov exponent that can be compute .
from data. We adopt this particular idea in our formulation®PServationgY (¢)}, and two hypothesel, and/;. The
and develop sequential tests that are different from the-alg goal is to design a sequential test= (7, 9), wherer is the

rithms considered in [3]. Our contribution lies in a formal ?topplfng time ?nd IS theftfr:mmw:ll (:]ems;ﬁn. Aft.er(;)bslervza\-
approach to the detection of voltage instability in the pres lon of 7 samples, one of the two hypotheses IS declared as

ence of unknown system parameters and measurement noigé(.3 true one. Le = 0 denote the declaration of hypothe-

Our algorithm is also shown to be asymptotically optimal. SIS HO andg = 1 dgnot_e the declgrgtl_on of hypothess .
Particularly, the objective is to minimize the expected sam

ple numberfE|[7], subject to the following constraints on the

onsider a classic sequential hypothesis testing probligm w

2. PROBLEM FORMULATION probability of error
2.1. Lyapunov Exponents Pls = 1|Hy] < a, (4)
The Lyapunov exponents in a non-linear system are analo- P06 =0/H,] < B, (5)

gous to the eigenvalues of a linear system which provide in- - . _ .
formation about the stability of the non-linear system. Thefor small positiven: and3. The first type of error given in (4)

Lyapunov exponents of a non-linear system are defined as fols referred to as false alarm and the second type of errongive
lows [15]. in (5) is referred to as missed detection.

L i i i ) The sequential short term voltage instability detection
Definition 1._ Consider a continuous time dynam|ca! syStemproblem considered in this work can be formulated as a se-
@ = f(x), withz € X € R". Leto(t,x) be the solution of 0 ntial hypothesis testing problem with time-varyingriis
the differential equation. Define the following limiting tria bution of observations. In particular, under each hypathes
do(t,z)T de(t, ), 1 observations are ruled by a non-stationary random process

7 (1) determined by a parametér The null hypothesis corre-
sponds to the stable systetfl; : § < 0. The alternative

LetA;(x) be the eigenvalues of the limiting matriXz).  hypothesis corresponds to the instable syst&n, 8 > 0.

The Lyapunov exponents(z) are defined as The objective, similar to the classic sequential hypothesi
(@) = log A () @) tsis;ing problem, is to minimize the expec_ted sample number
ject to the error constraints. To start with, we assumi th
Order A;(x) such that\; (z) > Aa(x) > ... > Ax(x). Then, under each hypothesis, the parameter is known. See Sec. 3.
A1(z) is called the maximum Lyapunov exponent. In practical applications, however, the value of paranseter
may be unknown. In Sec. 4 , we study the sequential voltage
(ipstability detection problem with unknown parameters.

In our formulation, the distribution of the sample obser-

vation at timet is

Alz) = 1i
(z) tlg;[ ox ox

An algorithm for online computation of Lyapunov expo-
nents with improved computational efficiency was propose
in [3]. Let V,,o € R™ be obtained data for time instances
mA, m = 0,1,..., M, for someA > 0, which is the time
interval between the measurements. Choose fixed small num- 1 (X (t) — )2
bers,0 < €; < e, and an integelV, such that form = f(X(#);6t) = meXP( 5
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wheref is the true parameter. Note that the distribution of B, the so called Wald’s approximation values can be used in
sample observations is time-varying within a specific modepractice. The Wald’s approximations of the values are
of exponential dependence to the parameter.

g L= ﬂ’ g b

o 1—a’

2.3. Preliminaries and Notations

A(@ upper bound on the expected number of observations for

Let us introduce some concepts and notations that are us(a1e SPRT-exp is given in the following theorem

throughout the paper. Let () = X (1), X(2),..., X (t), and
f(X");6) denote the joint distribution ok (). The notation  Theorem 1. The expected number of observations for the
161, 60) denotes the log-likelihood ratio of two distributions SPRT—exp _ (;SPRT—eap §SPRT—cwp) satisfies

with parameterg; andé, at timet,

Ry, [r3PRT—eep] < ge_jeo(—(l —a)log B — alog A),(14)

f(X();01)
14(61,60) = log W (7 Eo, [TSPRTfemP] < 90—1%90((1 — B)log A+ BlogB). (15)
The Kullback-Leibler (KL) divergence between the above t-Proof. Proof is omitted due to space limit. 0

wo distributions, denoted by (6,,6,) is defined as the fol-

lowing expectation of the log-likelihood ratio. Recall that in the classic simple hypothesis testing censid

ered by Wald it was shown that the average sample number

I4(01,00) = Eg, 14 (61, 00), (8) equalsto
: . , —(1—-a)logB —alog A
whereEy[.] is the expectation operator whéiis the parame- Eg,[1] = , (16)
ter determining the underlying distributions. Also, let D(61,60)
1—-75)log A log B
t Eo,[7] = ( B)Do(gel ;;)B =, 17)
Li(61,60) = > 1:(61,60), 9) 7
s=1 whereD(64, 6y) is the KL divergence between the distribu-
and tions corresponding to two hypotheses. A comparison be-
tween Theorem 1 and the classic problem shows a logarith-
t mic order of reduction in the average sample number for the
961,00 (t) = > Ts(61,60). (10)  voltage instability test.
s=1
Let us define the inverse functi@glleo (2) as 4. COMPOSITE HYPOTHESIS TESTING WITH
' EXPONENTIALLY TIME-VARYING PARAMETER
9971%90 (2) £ min{t € N : gg, g, (t) > 2}. (11) DEPENDENCE
In this section, we study the voltage instability detecfioob-
3. REDUCTION IN THE EXPECTED NUMBER OF lem where, as dictated by the practical application, the Lya

OBSERVATIONS punov exponents are unknown. We analyze the performance
of SGLRT-exp for the composite hypothesis testing problem.

To gain |nS|ght Into the_ S|m|Ia_1r_|t|es and d|fferences_bemve Conventionally the set of possible parameteris partitioned
the sequential voltage instability test and the classitseg to three disjoint sets. Under hypothedi, § € O, un-

tial test, we first consider the simple hypothesis case wher((jzer hypothesidT,, 6 € ©,, where®, N ©, — 0, andZ —
Hy: 0 =0y <OandH, : § = 6, > 0. The constraint on 0/{6¢ U ©,} # 0 is an indifference set. In this problem

the first and second type of error is givendpands3, respec- o inifterence set is assumed to be the, o) interval for
tively, as in (4) and (5). The SPRT-exp, a modification of the, ’

lass] . ol ) i | some smalk > 0. The set®9, and©, are the(—d, —a) and
classic SPRT, is as follows. Continue sampling as long as (a,d) intervals, respectively. The Bayes cost assigns cost one

for the declaration of hypothesi$; (or Hy) when hypothesis
Hy (or Hy) is the true one. Also, obtaining each sample ob-
servation incurs a cost ef> 0. The objective of a sequential
test is to minimize the Bayes cost which is equivalent to

log B < L(61,6p) < log A, (12)
stop sampling otherwise. The terminal decision is given by

§SPRT—cap _{ 0, if L(61,60) <logB, (13)

1, if Ly(61,60) > log A. R = cE[r] +Py[6 =1] or (18)

RT cEy[r] + Py[0 = 0], (29)

The thresholdsl andB are designed such that the error prob-
ability constraints are met. Calculating the exact valued o
and B is quite laborious. Instead of exact valuesAdfand  when the true parametéris in © or ©4, respectively. The
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Fig. 1. The probability of error for SGLRT-exp. Fig. 3. The probability of error for SGLRT-exp.

T
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4+ SCLRT-Exp

GLRT
—o-(GLRT =1

Fig. 2. The average sample number. Fig. 4. The average sample number.

SGLRT—exp i : : _ _
77 % is as follows. At timet calculate a maximum  Theorem 3. The Bayes cost of any sequential hypothesis test

likelihood estimation of the parameter, of exponents satisfies
0, = arg su X®. 9. 20 x _
b= omg gup S0 20) Ry > (1- e gy, (~(1 - ) loge), (26)

For anyd € ©/T definep() the index of the alternative such that — 0 asc — 0.
hypothesis ofd. In other words ifd € O let p(d) = 1,

otherwise, iff € ©, let p(d) = 0. Calculate they, as Proofs are omitted due to space limit.
_ ().
¢ = ““geesuf’g)f(X 19)- (21) 5. SIMULATIONS
Continue observation of new samples as long as In this section numerical analysis of the performance of the
~ SGLRT-exp is provided. The numerical results as we shal-
Li(6r, ¢0) < —loge, (22) | see are close to asymptotic upper bounds provided in the

stop observation, otherwise. The terminal decision ismgive Paper. Furthermore, to show the efficiency of the sequen-
by tial test, the average sample number of the SGLRT-exp is
N compared with a fixed size test with the same power. Fig. 1

§ICLRT=erp — 1 — p(f..). (23)  shows the probability of error for the SGLRT-exp over dif-

Next, we establish an upper bound on the performanc];eerent values of the cost For smallere, the cost of obtain-
of SGLF\;T—exp Moreover, we provide a lower bound on theiNd observations is lower, thus a higher number of observa-
i ' ions results in a smaller probability of error. Second fegur

) . . t
performance of any arbitrary sequential composite hypothe
sis test of exponents that shows the asymptotic optimalfity 0§hows tggggﬁfge sample number fqr the SGLR_T—exp algo-
SGLRT-exp. It is assumed the true parametefjisc O,. rithm (v ?). From our analytical results in Theo-

o : i g W = g1 (= [ imati
The similar results hold if the alternative hypothesis is th €M 2: the value of 99, (~logc) is an approximation
true one. For any € ©/7, let of the upper bound on the average sample number, which is

illustrated in the figure. Also, denoted b/ “/*”, the number

Y(0) =arg inf 11(0,). (24)  of observations required in a fixed size GLRT to achieve the
¥EOu) same probability of error is shown in Fig. 2 that confirms the
Also, let go,(t) = ga. w(oo(t), accordingly,g; (z) = efficiency of the sequential algorithm. In these simulagion
g (2) ’ 0. (60) fo the values ofl anda are assigned tb and0.05, respectively.
00,3 (60) V77" For the first two figure®, = 0.1. The second two figures
Theorem 2. The Bayes cost of the SGLRT-exp satisfies show the same numerical analysis wiiign= —0.1.
RyCHRI=E < (14 €)e gy (— log o), (25)

such that — 0 asc — 0.
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