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ABSTRACT

The quickest detection of short-term voltage instability in
a smart grid is considered. The problem is formulated as
a binary sequential composite hypothesis testing where the
null hypothesis is a non-stationary process with an unknown
exponentially decaying mean and the alternative is a non-
stationary process with an unknown exponentially increasing
mean. A sequential generalized likelihood ratio test (SGLRT)
is proposed and analyzed. It is shown that the proposed S-
GLRT is asymptotically optimal.

Index Terms— Sequential hypothesis testing, sequential
generalized likelihood ratio test, voltage instability, Lyapunov
exponents.

1. INTRODUCTION

1.1. Voltage Stability

Voltage stability in a power system refers to the ability of the
system to maintain the load voltage within specified operating
limits. The voltage stability problem is classified into short-
term and long-term stability phenomena [1]. Short-term volt-
age instability phenomenon is mainly caused by heavy usage
of reactive power by electronically controlled loads and in-
duction motors.

Short-term instability can be characterized by the system
Lyapunov exponents [2]. In particular, short-term voltagein-
stability occurs if one of the Lyapunov exponents is positive.
To detect voltage instability, it is therefore natural to use ei-
ther the Lyapunov exponents or a proxy of Lyapunov expo-
nents as the indicator for instability. Existing techniques es-
timate Lyapunov exponents (or related statistics) from phasor
measurement unit (PMU) data or state estimates [2,3]. These
existing techniques are heuristic and do not provide any level
of performance guarantee.

1.2. Main Results

In this paper, we study voltage instability detection basedon
classic sequential hypothesis testing theory. In the classic se-
quential hypothesis testing [4], the decision maker aims to
infer the state of an underlying phenomenon from an i.i.d. se-
quence of observations{Y (t)}t≥1 drawn from two different

distributions depending on whether hypothesisH0 or H1 is
true (assuming binary hypothesis testing). The objective is
to minimize the detection delay subject to an error probabil-
ity constraint. Voltage instability detection can be formulat-
ed as a sequential composite hypothesis testing problem with
nonidentical distributions. Specifically, the Lyapunov expo-
nents under both hypotheses are unknown, and the observa-
tions are non-stationary random processes with either expo-
nentially decaying or exponentially increasing expectations.

We develop a sequential test for the detection of the p-
resence of unknown positive Lyapunov exponents. Referred
to as sequential generalized likelihood ratio test of exponents
(SGLRT-exp), this test is shown to be both consistent and
asymptotically optimal in the sense that the probability ofer-
ror diminishes as the number of samples increases. Specifi-
cally, let the maximum Lyapunov exponent be denoted byλ1,
and two hypotheses beH0 : λ1 < 0 andH1 : λ1 > 0 cor-
responding to stable and instable states, respectively. Within
a Bayes cost formulation of assigning cost one to either type
of error and costc > 0 to each observation, the performance
of SGLRT-exp is analyzed. Moreover, asymptotic (asc goes
to zero) lower bound on the performance of any sequential
test within this formulation is established which shows the
asymptotic optimality of the SGLRT-exp.

1.3. Related Work

The classic sequential hypothesis testing problem was pio-
neered by Wald [4]. Wald showed that the sequential prob-
ability ratio test (SPRT) is optimal in terms of minimizing
the expected sample size subject to given error probability
constraints. The composite hypotheses testing problem is
fundamentally more difficult than simple hypothesis testing
problem. The sequential generalized likelihood ratio test(S-
GLRT) was first studied by Schwartz for one-parameter expo-
nential family with i.i.d. observations [5]. Adopting a similar
Bayesian formulation as in this paper, Schwartz showed that
SGLRT is asymptotically optimal whenc approaches to zero.
A refinement of [5] was studied by Lai [6, 7] which showed
that for a multivariate exponential family, SGLRT asymptot-
ically optimizes the Bayesian cost. A more general setting
where a set of different experiments are available and the ob-
servations depend on the chosen experiment was studied by
Chernoff [8]. Another well-studied test for sequential com-
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posite hypothesis testing is the sequential adaptive likelihood
ratio test (SALRT) [9–11]. The advantage of SALRT is its
computationally more efficient statistics. The disadvantage
of SALRT is that poor early estimates can never be revised
even if a large number of observations are available. All
these classic results assume i.i.d. observations over timethat
is different from the specific non-stationary sequential test
formulated in this paper.

The optimality of SPRT for sequential hypothesis testing
with non-stationary observations was shown in [12]. The op-
timal SPRT in the non-stationary environment requires labo-
rious calculation of a sequence of thresholds. The asymp-
totic optimality of SPRT with approximated thresholds, un-
der certain assumptions on log-likelihood ratios, was shown
in [13,14]. Theses assumptions, however, do not apply to the
voltage instability detection problem considered in this paper.

The Lyapunov exponents method in power system short-
term voltage instability was proposed in [2]. An online short-
term voltage stability monitoring algorithm was introduced
in [3], where a model-free approach is developed based on a
proxy of maximum Lyapunov exponent that can be computed
from data. We adopt this particular idea in our formulation
and develop sequential tests that are different from the algo-
rithms considered in [3]. Our contribution lies in a formal
approach to the detection of voltage instability in the pres-
ence of unknown system parameters and measurement noise.
Our algorithm is also shown to be asymptotically optimal.

2. PROBLEM FORMULATION

2.1. Lyapunov Exponents

The Lyapunov exponents in a non-linear system are analo-
gous to the eigenvalues of a linear system which provide in-
formation about the stability of the non-linear system. The
Lyapunov exponents of a non-linear system are defined as fol-
lows [15].

Definition 1. Consider a continuous time dynamical system
ẋ = f(x), with x ∈ X ∈ R

n. Letφ(t, x) be the solution of
the differential equation. Define the following limiting matrix

Λ(x) = lim
t→∞

[
∂φ(t, x)T

∂x

∂φ(t, x)

∂x
]

1
2t . (1)

LetΛi(x) be the eigenvalues of the limiting matrixΛ(x).
The Lyapunov exponentsλi(x) are defined as

λi(x) = logΛi(x) (2)

OrderΛi(x) such thatλ1(x) ≥ λ2(x) ≥ ... ≥ λN (x). Then,
λ1(x) is called the maximum Lyapunov exponent.

An algorithm for online computation of Lyapunov expo-
nents with improved computational efficiency was proposed
in [3]. Let Vm∆ ∈ R

n be obtained data for time instances
m∆, m = 0, 1, ...,M , for some∆ > 0, which is the time
interval between the measurements. Choose fixed small num-
bers,0 < ǫ1 < ǫ2, and an integerN , such that form =

1, 2, ..., N , ǫ1 < ||Vm∆ − V(m−1)∆|| < ǫ2. The maximum
Lyapunov exponent at timek∆, is obtained as follows [3].
Fork > N

exp(Nk∆λ1) = ΠNm=1

||V(k+m)∆ − V(k+m−1)∆||
||Vm∆ − V(m−1)∆||

. (3)

Let N∆λ1 be denoted byθ andk − N be denoted byt.
Moreover, letX(t) denote the statistic obtained from mea-
surements (the right hand side of equation (3)), referred toas
sample observation. Taking into account the effect of noise
on the value of sample observation, the sample observation-
s of the power system at timet are in the form ofX(t) =
eθt + n(t), wheren(t) is assumed to be the normally dis-
tributed noise. The parameterθ determines the stability of the
system such that forθ < 0 the system is stable and otherwise
the system is instable.

2.2. Sequential Voltage Instability Testing

Consider a classic sequential hypothesis testing problem with
observations{Y (t)}t≥1 and two hypothesesH0 andH1. The
goal is to design a sequential testπ = (τ, δ), whereτ is the
stopping time andδ is the terminal decision. After observa-
tion of τ samples, one of the two hypotheses is declared as
the true one. Letδ = 0 denote the declaration of hypothe-
sisH0 andδ = 1 denote the declaration of hypothesisH1 .
Particularly, the objective is to minimize the expected sam-
ple number,E[τ ], subject to the following constraints on the
probability of error

P[δ = 1|H0] ≤ α, (4)

P[δ = 0|H1] ≤ β, (5)

for small positiveα andβ. The first type of error given in (4)
is referred to as false alarm and the second type of error given
in (5) is referred to as missed detection.

The sequential short term voltage instability detection
problem considered in this work can be formulated as a se-
quential hypothesis testing problem with time-varying distri-
bution of observations. In particular, under each hypothesis,
observations are ruled by a non-stationary random process
determined by a parameterθ. The null hypothesis corre-
sponds to the stable system,H0 : θ < 0. The alternative
hypothesis corresponds to the instable system,H1 : θ > 0.
The objective, similar to the classic sequential hypothesis
testing problem, is to minimize the expected sample number
subject to the error constraints. To start with, we assume that,
under each hypothesis, the parameter is known. See Sec. 3.
In practical applications, however, the value of parameters
may be unknown. In Sec. 4 , we study the sequential voltage
instability detection problem with unknown parameters.

In our formulation, the distribution of the sample obser-
vation at timet is

f(X(t); θt) =
1√
2π

exp(
(X(t)− eθt)2

2
), (6)
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whereθ is the true parameter. Note that the distribution of
sample observations is time-varying within a specific model
of exponential dependence to the parameter.

2.3. Preliminaries and Notations

Let us introduce some concepts and notations that are used
throughout the paper. LetX(t) = X(1), X(2), ..., X(t), and
f(X(t); θ) denote the joint distribution ofX(t). The notation
lt(θ1, θ0) denotes the log-likelihood ratio of two distributions
with parametersθ1 andθ0 at timet,

lt(θ1, θ0) = log
f(X(t); θ1t)

f(X(t); θ0t)
. (7)

The Kullback-Leibler (KL) divergence between the above t-
wo distributions, denoted byIt(θ1, θ0) is defined as the fol-
lowing expectation of the log-likelihood ratio.

It(θ1, θ0) = Eθ1 lt(θ1, θ0), (8)

whereEθ[.] is the expectation operator whenθ is the parame-
ter determining the underlying distributions. Also, let

Lt(θ1, θ0) =
t∑

s=1

ls(θ1, θ0), (9)

and

gθ1,θ0(t) =

t∑

s=1

Is(θ1, θ0). (10)

Let us define the inverse functiong−1
θ1,θ0

(z) as

g−1
θ1,θ0

(z) , min{t ∈ N : gθ1,θ0(t) ≥ z}. (11)

3. REDUCTION IN THE EXPECTED NUMBER OF
OBSERVATIONS

To gain insight into the similarities and differences between
the sequential voltage instability test and the classic sequen-
tial test, we first consider the simple hypothesis case where
H0 : θ = θ0 < 0 andH1 : θ = θ1 > 0. The constraint on
the first and second type of error is given byα andβ, respec-
tively, as in (4) and (5). The SPRT-exp, a modification of the
classic SPRT, is as follows. Continue sampling as long as

logB < Lt(θ1, θ0) < logA, (12)

stop sampling otherwise. The terminal decision is given by

δSPRT−exp =

{
0, if Lt(θ1, θ0) ≤ logB,
1, if Lt(θ1, θ0) ≥ logA.

(13)

The thresholdsA andB are designed such that the error prob-
ability constraints are met. Calculating the exact values of A
andB is quite laborious. Instead of exact values ofA and

B, the so called Wald’s approximation values can be used in
practice. The Wald’s approximations of the values are

A =
1− β

α
, B =

β

1− α
.

An upper bound on the expected number of observations for
the SPRT-exp is given in the following theorem.

Theorem 1. The expected number of observations for the
πSPRT−exp = (τSPRT−exp, δSPRT−exp) satisfies

Eθ0 [τ
SPRT−exp] ≤ g−1

θ1,θ0
(−(1− α) logB − α logA),(14)

Eθ1 [τ
SPRT−exp] ≤ g−1

θ1,θ0
((1 − β) logA+ β logB). (15)

Proof. Proof is omitted due to space limit.

Recall that in the classic simple hypothesis testing consid-
ered by Wald it was shown that the average sample number
equals to

Eθ0 [τ ] =
−(1− α) logB − α logA

D(θ1, θ0)
, (16)

Eθ1 [τ ] =
(1− β) logA+ β logB

D(θ1, θ0)
, (17)

whereD(θ1, θ0) is the KL divergence between the distribu-
tions corresponding to two hypotheses. A comparison be-
tween Theorem 1 and the classic problem shows a logarith-
mic order of reduction in the average sample number for the
voltage instability test.

4. COMPOSITE HYPOTHESIS TESTING WITH
EXPONENTIALLY TIME-VARYING PARAMETER

DEPENDENCE

In this section, we study the voltage instability detectionprob-
lem where, as dictated by the practical application, the Lya-
punov exponents are unknown. We analyze the performance
of SGLRT-exp for the composite hypothesis testing problem.
Conventionally the set of possible parametersΘ is partitioned
to three disjoint sets. Under hypothesisH0, θ ∈ Θ0, un-
der hypothesisH1, θ ∈ Θ1, whereΘ0 ∩ Θ1 = ∅, andI =
Θ/{Θ0 ∪ Θ1} 6= ∅ is an indifference set. In this problem
the indifference set is assumed to be the(−a, a) interval for
some smalla > 0. The setsΘ0 andΘ1 are the(−d,−a) and
(a, d) intervals, respectively. The Bayes cost assigns cost one
for the declaration of hypothesisH1 (orH0) when hypothesis
H0 (orH1) is the true one. Also, obtaining each sample ob-
servation incurs a cost ofc > 0. The objective of a sequential
test is to minimize the Bayes cost which is equivalent to

Rπ0 = cEθ[τ ] + Pθ[δ = 1] or (18)

Rπ1 = cEθ[τ ] + Pθ[δ = 0], (19)

when the true parameterθ is in Θ0 or Θ1, respectively. The
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Fig. 1. The probability of error for SGLRT-exp.

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16

t

 

 

− log
2
c

τ(u)

τSGLRT−Exp

τGLRT

Fig. 2. The average sample number.

πSGLRT−exp is as follows. At timet calculate a maximum
likelihood estimation of the parameter,

θ̂t = arg sup
θ∈Θ/I

f(X(t); θ). (20)

For anyθ ∈ Θ/I defineρ(θ) the index of the alternative
hypothesis ofθ. In other words ifθ ∈ Θ0 let ρ(θ) = 1,
otherwise, ifθ ∈ Θ1 let ρ(θ) = 0. Calculate theφt as

φt = arg sup
θ∈Θ

ρ(θ̂t)

f(X(t); θ). (21)

Continue observation of new samples as long as

Lt(θ̂t, φt) < − log c, (22)

stop observation, otherwise. The terminal decision is given
by

δSGLRT−exp = 1− ρ(θ̂τ ). (23)

Next, we establish an upper bound on the performance
of SGLRT-exp. Moreover, we provide a lower bound on the
performance of any arbitrary sequential composite hypothe-
sis test of exponents that shows the asymptotic optimality of
SGLRT-exp. It is assumed the true parameter isθ0 ∈ Θ0.
The similar results hold if the alternative hypothesis is the
true one. For anyθ ∈ Θ/I, let

ψ(θ) = arg inf
ψ∈Θρ(θ)

I1(θ, ψ). (24)

Also, let gθ0(t) = gθ0,ψ(θ0)(t), accordingly, g−1
θ0

(z) =

g−1
θ0,ψ(θ0)

(z).

Theorem 2. The Bayes cost of the SGLRT-exp satisfies

RSGLRT−exp
0 ≤ (1 + ǫ)c g−1

θ0
(− log c), (25)

such thatǫ→ 0 asc→ 0.
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Fig. 3. The probability of error for SGLRT-exp.
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Fig. 4. The average sample number.

Theorem 3. The Bayes cost of any sequential hypothesis test
of exponentsπ satisfies

Rπ0 ≥ (1− ǫ)c g−1
θ0

(−(1− ǫ) log c), (26)

such thatǫ→ 0 asc→ 0.

Proofs are omitted due to space limit.

5. SIMULATIONS

In this section numerical analysis of the performance of the
SGLRT-exp is provided. The numerical results as we shal-
l see are close to asymptotic upper bounds provided in the
paper. Furthermore, to show the efficiency of the sequen-
tial test, the average sample number of the SGLRT-exp is
compared with a fixed size test with the same power. Fig. 1
shows the probability of error for the SGLRT-exp over dif-
ferent values of the costc. For smallerc, the cost of obtain-
ing observations is lower, thus a higher number of observa-
tions results in a smaller probability of error. Second figure,
shows the average sample number for the SGLRT-exp algo-
rithm (τSGLRT−exp). From our analytical results in Theo-
rem 2, the value ofτ (u) = g−1

θ0
(− log c) is an approximation

of the upper bound on the average sample number, which is
illustrated in the figure. Also, denoted byτGLRT , the number
of observations required in a fixed size GLRT to achieve the
same probability of error is shown in Fig. 2 that confirms the
efficiency of the sequential algorithm. In these simulations
the values ofd anda are assigned to1 and0.05, respectively.
For the first two figuresθ0 = 0.1. The second two figures
show the same numerical analysis whenθ0 = −0.1.
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