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ABSTRACT
Random distortion testing (RDT) introduced in [1] is aimed at
detecting any significantly big distortion of a signal with re-
spect to a model of this signal, in presence of noise and with-
out prior knowlegde on the distortion distribution. The RDT
formulation makes it possible to state the standard change-
in-mean detection problem differently. It leads to the Block-
RDT approach that requires no iid assumption and no prior
knowledge on the distributions of the observations before and
after change. The optimal tests derived in the Block-RDT ap-
proach are alternative to Shewhart charts and outperform the
latter by accounting for possible model mismatches that cause
likelihood theory to fail. Experimental results dedicated to the
detection of steps in a random process illustrate our intention.

Index Terms— Change detection, control charts, random
distortion testing, statistical process control, non-stationary
signal

1. INTRODUCTION

Since pionering works of Shewhart, Wald and Page [2–4],
change detection is of crucial interest in many research
and application areas, including quality control, monitoring,
tracking, fault detection, statistical process control (SPC),
signal processing, telecommunications, sensor networks and
so forth (see [5–17] among others). A standard solution to the
change-in-mean detection problem is the Shewhart chart [2].
Basically, the Shewhart chart assumes iid observations with
known probability distributions, before and after change. It
splits the observed process Y into blocks of N samples.
In each block, the change-in-mean detection is posed as
the binary hypothesis testing problem with null hypothesis
H0 : ξ = ξ0 and alternative hypothesis H1 : ξ = ξ1, where
ξ stands for the common expectation of the samples. The
testing is then performed in each block by Neyman-Pearson
(NP) test [5, Sec. 2.2.1]. The Shewhart control chart thus
suffers from limitations of NP tests. In particular, it is fragile
because it is not robust to possible fluctuations around the
nominal model. Beyond this drawback, prior knowledge of
∗The first author is with UMR CNRS 6285 Lab-STICC
†The second author is with INSERM U1101 LaTIM

ξ1 is actually questionable and composite testing with alter-
native hypothesis ξ 6= ξ0 should therefore be preferred. More
generally, it seems unrealistic to assume prior knowledge on
the process distribution, especially when this process is out of
control after change. In addition, the iid assumption for ob-
servations is not satisfied in many statistical signal processing
applications, if only the signal is deterministic. As a conse-
quence, methods issued from the nonparametric change point
model framework [7,18–21] can hardly be directly applied in
real world applications, as alternative to Shewhart charts.

This paper presents and discusses an alternative approach
to Shewhart charts for the change-in-mean detection problem.
This new approach overcomes limitations of Shewhart control
charts without requiring the iid assumption and prior knowl-
edge of the sample distributions. This is achieved by stat-
ing differently the change-in-mean detection problem thanks
to the Random Distortion Testing (RDT) formulation intro-
duced in [1]. More precisely, a change in the mean of the
observed process Y is hereafter modeled as a significantly
big distortion of the process empirical mean with respect to
ξ0. The change-in-mean detection problem then becomes the
RDT problem of detecting such a significantly big distortion
in independent and additive noise. Optimal tests exhibited
in [1] are then used instead of NP ones to perform the change-
in-mean detection in each block of N samples. The resulting
procedure is thus called Block-RDT control chart.

After introducing terminology and notation, the main core
of the paper is Section 2, where the Block-RDT formulation
for the change-in-mean detection problem is introduced and
one of the main theoretical results on it is stated. Some exper-
imental results aimed at pedagogically illustrating the theoret-
ical contents of Section 2 are then given in Section 3 before
concluding the paper by some discussions and perspectives.

Notation and terminology

All random vectors are assumed to be defined on the same
probability space (Ω,B,P). With J1, NK = {1, 2, . . . , N},
M(Ω,Rd)J1,NK denotes the set of all d-dimensional random
processes defined on J1, NK and valued in Rd. For any U ∈
M(Ω,Rd)J1,NK, we write U = (U1, U2, . . . , UN ) where each
Un is an element of M(Ω,Rd). In the sequel, we confuse each
U ∈M(Ω,Rd)J1,NK with the d×N -dimensional real random
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vector, obtained by stacking the columns of U under each
other. The empirical mean of any given U ∈ M(Ω,Rd)J1,NK

is the d-dimensional real random vector defined by 〈U〉 =

(1/N)
∑N
n=1 Un. The N × N identity matrix is denoted by

IN .

For any ρ ∈ [0,∞), R(ρ, ·) denotes the cumulative distri-
bution function (cdf) of the square root of any random vari-
able that follows the non-central χ2 distribution with d de-
grees of freedom and non-centrality parameter ρ2. Given γ ∈
(0, 1], λγ(ρ) is univoquely defined for every ρ ∈ [0,∞) by
the equality R(ρ, λγ(ρ)) = 1− γ.

2. CHANGE-IN-MEAN DETECTION BY
BLOCK-RDT

We introduce the Block-RDT formulation for the change-in-
mean detection problem in gaussian noise. We then define the
performance criteria to devise the optimal tests for this formu-
lation. These performance criteria are similar to the standard
notions of size and power [22]. Their differences with stan-
dard ones rely mainly on the fact that the Block-RDT formu-
lation is not a usual hypothesis testing problem. Indeed, it
concerns random events and not hypotheses on deterministic
parameters or random parameters with known distributions.
This is the reason why such a problem is said to be an event
testing problem, as in [1]. The optimality criterion chosen
is then based on the natural invariance of the event testing
problem under consideration. Subsection 2.3 introduces this
optimality criterion and its optimal solution.

2.1. Problem statement

Let us consider some d-dimensional real random process Y =
Ξ +W where Ξ and W are elements of M(Ω,Rd)J1,NK, with
W ∼ N(0, IN ⊗ C), where C is positive definite. Further-
more, Wn and Ξn are assumed to be independent for each
n ∈ J1, NK. In our formulation, Ξ models some distortion
around the nominal model ξ0 ∈ Rd so that, in absence of any
distortion, Ξ would be equal to ξ0, as in the model considered
by the Shewhart chart. Due to distortions, we do not have
Ξ = ξ0 anymore. However, it can be expected that the empir-
ical mean 〈Ξ〉 remains close to ξ0 in the nominal situation and
drifts significantly from this value in case of an abrupt change.
This is the reason why our proposition is to test whether 〈Ξ〉
deviates significantly from ξ0 or not. In order to compensate
variations due to C, the deviation between 〈Ξ〉 and ξ0 is mea-
sured by the Mahalanobis norm [23] ‖〈Ξ〉 − ξ0‖ of 〈Ξ〉 − ξ0,
with ‖x‖ =

√
xTC−1x for x ∈ Rd. The role of tolerance τ is

to distinguish small distortions from large ones of actual sig-
nificance. This Block-RDT formulation is then summarized

by:
Observation:Y = Ξ +W ∈M(Ω,Rd)J1,NK

with
{

Ξ ∈M(Ω,Rd)J1,NK,W ∼ N(0, IN ⊗ C),
Ξn and Wn independent for each n ∈ J1, NK,

Null event :
[
‖〈Ξ〉 − ξ0‖ 6 τ

]
,

Alternative event :
[
‖〈Ξ〉 − ξ0‖ > τ

]
.

(1)
The following performance criteria are then suitable for solv-
ing this event testing problem.

2.2. Size and power of tests for Block-RDT

Given some natural number k, a k-dimensional test is any
measurable map of Rk into {0, 1}. Let T be some d × N -
dimensional test. For any signal Ξ ∈ M(Ω,Rd)J1,NK such
that P

[
‖〈Ξ〉 − ξ0‖ 6 τ

]
6= 0, the size of T for testing the

empirical mean of Ξ is then defined by:

αΞ(T) = P
[
T(Ξ +W ) = 1

∣∣‖〈Ξ〉 − ξ0‖ 6 τ
]
. (2)

Similarly, the power of T for testing the empirical mean of Ξ
is defined for every Ξ such that P

[
‖〈Ξ〉 − ξ0‖ > τ

]
6= 0 by:

βΞ(T) = P
[
T(Ξ +W ) = 1

∣∣‖〈Ξ〉 − ξ0‖ > τ
]
. (3)

Similarly to Neyman-Pearson’s approach in binary hypothe-
sis testing, we are looking for tests with guaranteed size and
optimal power in a suitable sense. Accordingly, we search
for tests whose size, for testing the mean of any given Ξ ∈
M(Ω,Rd)J1,NK such that P

[
‖〈Ξ〉 − ξ0‖ 6 τ

]
6= 0, is upper-

bounded by a specified level γ ∈ (0, 1). If we define the size
of a given d×N -dimensional T by:

α(T) = sup
Ξ∈M(Ω,Rd)J1,NK : P [ ‖〈Ξ〉−ξ0‖6τ ]6=0

αΞ(T), (4)

we are thus looking for tests T such that α(T) 6 γ. Mim-
icking standard terminology in statistical inference, such tests
are said to have level γ and the class of these tests with level γ
is denoted by Kγ . We also say that T has size γ if α(T) = γ.

On the other hand, there does not exist T∗ ∈ Kγ

such that βΞ(T∗) > βΞ(T) for any T ∈ Kγ and any
Ξ ∈M(Ω,Rd)J1,NK such that P

[
‖〈Ξ〉− ξ0‖ > τ

]
6= 0. How-

ever, as seen below, the event testing problem (1) exhibits
some invariance properties. Thus, we restrict our attention to
a certain class C of invariant tests and exhibit Topt ∈ C ∩Kγ

such that βΞ(Topt) > βΞ(T) for any T ∈ C ∩ Kγ and any Ξ
with P

[
‖〈Ξ〉 − ξ0‖ > τ

]
6= 0. Test Topt will be said to be

UMP in C ∩ Kγ for the change-in-mean detection problem
(1).

2.3. Block-RDT control chart

Let us first describe the relevant invariance properties of prob-
lem (1). First, we have the following eigenvector decomposi-
tion C = UΛUT, where Λ is a diagonal matrix whose diago-
nal elements are the eigenvalues of C and U is a d×d orthog-
onal matrix. We now set: Φ = Λ−1/2UT. Let G be the group
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of all transforms gR such that gR(x) = Φ−1RΦ(x− ξ0) + ξ0
for any x ∈ Rd, where R is an d × d orthogonal matrix. We
now introduce the group action [24, Definition 6.3, p. 186] π
that associates to each given g ∈ G the map πg : Rd×N →
Rd×N defined for every x = (x1, x2, . . . , xN ) ∈ Rd×N by:
πg(x) = (g(x1), g(x2), . . . , g(xN )). Some routine algebra
shows that the event testing problem (1) is invariant under
the action of π in that πg(Y ) = πg(Ξ) + W ′ with W ′ =
(W ′1,W

′
2, . . . ,W

′
N ) ∼ N(0, IN ⊗ C) and g(Ξn) is indepen-

dent of W ′n for each n ∈ J1, NK. Therefore, πg(Y ) satisfies
the same hypotheses as Y . It can also be easily proved that
‖〈πg(Ξ)〉−ξ0‖ = ‖〈Ξ〉−ξ0‖. Hence, the change-in-mean de-
tection problem (1) remains unchanged by substituting πg(Ξ)
for Ξ and W ′ for W . It is thus natural to seek π-invariant
d × N -dimensional tests, that is, d × N -dimensional tests T
invariant under the action of π: T(πg(x)) = T(x) for any
g ∈ G and any x ∈ Rd×N .

Since the multiple d-dimensional samples in the same
block gives the opportunity to reduce the noise variance by
averaging observations, we consider π-invariant integrator
tests, that is, π-invariant d×N -dimensional tests T for which
there exists some d-dimensional test T, henceforth called
the reduced form of T, such that T(x) = T(〈x〉) for any
x ∈ Rd×N . Reduced forms of π-invariant integrator tests are
G-invariant: T(g(x)) = T(x) for any x ∈ Rd and any g ∈ G.

The following result derives from the foregoing and [1,
Theorem 2], after noticing that the event testing problem (1)
is an RDT problem [1].

Proposition 1 Given γ ∈ (0, 1) and τ ∈ [0,∞), put ηN =
λγ(τ

√
N)/
√
N . Let TηN be the d ×N -dimensional test de-

fined for every x ∈ Rd by:

TηN (x) =

{
0 if ‖〈x〉 − ξ0‖ 6 ηN
1 otherwise, (5)

Test TηN has size γ and is UMP among all π-invariant in-
tegrator tests with level γ for the change-in-mean detection
problem (1).

3. EXPERIMENTAL RESULTS

In this work, we consider the detection of a change-in-mean
in gaussian noise when some model mismatch is introduced.
This example is particularly useful to highlight the added-
value brought by the Block-RDT chart over the conventional
Shewhart chart with respect to practical issues.

More specifically, let us begin with the following perfect
model Yn = Ξn + Wn, for n ∈ N, where the clean signal
Ξn is deterministic with Ξn = ξ0 before change point and
Ξn = ξ1 after change point. We assume that Wn ∼ N(0,C)
for any n ∈ N, where C is positive definite. As recalled in
the introduction, the Shewhart chart proceeds per blocks of
N samples. In each block, we test the null hypothesis H0 that

the expectation of each sample is ξ0 against the alternative hy-
pothesis H1 that the expectation of each sample is ξ1. As long
as H0 is accepted, the hypotheses are tested on consecutive
blocks of observations. Given γ ∈ (0, 1), H0 can be tested
against H1 in each block by a Neyman-Pearson test with size
γ. Unfortunately, there may be some unexpected mismatch
between the model and the actual signal observed in practice.
In fact, clean signal is generally not constant under each hy-
pothesis because of unavoidable perturbations that can hardly
be modelled. Because of such mismatch, the Shewhart con-
trol chart may fail to keep the false alarm rate bounded by γ.
By construction, the Block-RDT chart is not affected by such
limitations.

Therefore, instead of dealing with the perfect and some-
what unrealistic model described above, consider the case
where Yn = Ξn + Wn for all n ∈ N, with Ξn = ξ0 + ∆n

before change and Ξn = ξ1 + ∆n after change. The ran-
dom vectors ∆n are additive distortions of the model with
unknown distributions. Let us assume the amplitude of each
∆n to be bounded by some positive value τ : P[‖∆n‖ ≤ τ ] =
1,∀n ∈ N. With this assumption, the testing on a given block
can be performed, even in presence of distortions, thanks to
Proposition 1.

To illustrate the foregoing, we carried out experiments for
d = 2 and C = σ2Id. We chose ∆n ∼ N(0, σ2

∆Id) with
σ∆ = τ/2 for each n. Because P[‖∆n‖ ≤ τ ] = 86.47%, we
do not have ‖∆n‖ ≤ τ . However, this does not really impact
the results below. These ones were obtained with a Signal-
to-Noise ratio (SNR) ‖ξ1−ξ0‖σ that varied up to 10dB and a
Signal-to-maximum-Distortion Ratio (SDR) ‖ξ1−ξ0‖τ fixed to
17dB. Fig.1 displays the false-alarm and detection rates (Pfa
and Pd, respectively) yielded by the Shewhart and Block-
RDT charts for a given block. Different block-sizes values
were considered to get these results. It turns out that Shewhart
chart cannot guarantee any specified level γ < 0.5, although
the distortion is quite small. In contrast, Block-RDT main-
tains the false-alarm rate below the specified value γ. Note
that such results would remain exactly the same if the noise
covariance matrix C were not scaled-identity, simply because
the use of the Mahalanobis norm amounts to performing noise
whitening before using the standard Euclidean norm.

To complete these results, figures Fig.2 and Fig.3 plot
the mean run-length between false-alarms (ARL0) and the
mean detection delay (ARL1) for different block-sizes. These
two indices directly reflect the behavior of Pfa and Pd [5, 7].
Indeed, according to Figure 3, Block-RDT entails longer
change decision delay than Shewhart chart for small SNR’s.
When the SNR is above 0 dB, the change decision delays
of the Block-RDT and Shewhart charts are similar. As long
as ARL0 is concerned, the duration between false-alarms
is smaller by using Block-RDT than Shewhart chart, which
implies that more conformed products can be produced by
the former than the latter in quality control context. It also
follows from these performance curves that the value of the
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Fig. 1: Probabilities of false-alarm (Pfa) and good detection (Pd) yielded by
Shewhart and Block-RDT charts for different values of block-size (N ). The
SNR and SDR were set to 5 dB and 17 dB respectively. The distortion was
thus of small amplitude.

block-size must be made so as to achieve a trade-off between
ARL0 and ARL1, with respect to the requirements for the
control process. A sequential analysis approach could bypass
this issue.
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to SNR = 5 dB as always. The level was fixed to γ = 0.05.

4. CONCLUSION AND PERSPECTIVES

The RDT formulation [1] has yielded a new model and a new
control chart, namely, the Block-RDT control chart, for the
detection of a change-in-mean in a d-dimensional real random
signal observed in Gaussian noise. Block-RDT control chart
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Fig. 3: Mean run-length between false-alarms (ARL1) by Shewhart and
Block-RDT charts for different values of block-size (N ). The SDR was set
to SNR = 5 dB as always. The level was fixed to γ = 0.05.

performs blockwise detection of a change-in-mean, without
iid assumption and prior knowledge on the signal distribu-
tion. It is an alternative to Shewhart control chart for situa-
tions where likelihood theory does not apply by lack of prior
knowledge or may fail because of possible model mismatch.

Such results complete those already obtained within the
RDT framework [1,12,25] and open prospects in detection of
abrupt changes, in continuation to standard approaches such
as those exposed in [7]. Especially, the RDT framework is
basically intended to account for model mismatches, multi-
dimensional and not necessarily iid observations. As such,
extension of this framework and its applications match con-
crete issues encountered in real-world applications, inasmuch
as Block-RDT has very low complexity. An extension to se-
quential framework should also be of interest for an adaptive
choice of the optimal block size.
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