
DETECTING HIDDEN CLIQUES FROM NOISY OBSERVATIONS

Yang Liu, Mingyan Liu

Emails: {youngliu, mingyan}@umich.edu.
Electrical Engineering and Computer Science, University of Michigan, Ann Arbor.

ABSTRACT

In this paper we present a methodology to uncover hidden
cliques/communities among a set of nodes when observation-
s of their relationships or connectivities are noisy. Existing
literature in community detection typically starts with the as-
sumption that the statistical properties of community structure
is known a priori, as well as the number of communities, so the
task at hand is solely to partition the set into the given num-
ber of groups. In practice neither assumption is necessarily
true. Motivated by this, we set out to determine a detectabil-
ity condition (from spectral analysis) prior to performing the
partitioning task, and further illustrate how to combine this
detectability condition with clustering algorithms to arrive at
desirable partitions without a priori information on the clique
structure. We validate our results via simulation and make
comparison with existing heuristics to demonstrate its advan-
tages.

Index Terms— Community detection, spectral analysis,
random matrix

1. INTRODUCTION

In this paper we consider the problem of uncovering clique
structure (communities) among a set of nodes or agents when
no prior knowledge on the clique structure or the number of
cliques is available and observations on the relationship be-
tween nodes are noisy. This problem is motivated by clique
detection, which has been attracting attentions recently under
various contexts. For example, consider malicious campaigns
of online crime (e.g., spamming and phishing), which are be-
lieved to be highly coordinated and follow certain patterns. To
be able to identify such structures would be extremely helpful
in designing defensive mechanisms and building more resilient
networks.

There is a rich literature in clique detection on graphs, see
e.g., [3, 4, 10]. However, most of the current solutions (e.g.,
clustering algorithms) start with the assumption that the com-
munity structure is known a priori, including the number of
communities, so the task at hand is solely to develop method-
ologies to extract the communities from the graph, see e.g.,
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different heuristics developed to target optimal or near-optimal
solutions using different measures [1, 3], and to improve the
performance of clustering or partitioning algorithms [9]. A
prime example is the K-means algorithm, which assumes a
priori the knowledge of the right choice of K, the number of
clusters to be identified.

On the other hand, in practice we do not always know the
clique structures, including the average strength of connection
among members of a clique vs. the strength of connection be-
tween them and members outside the clique. Nor do we nec-
essarily know how many cliques there are. Moreover our ob-
servation or data on the above structural properties are often
noisy. For instance, a friend may choose not to communicate
with another friend on a given day in a social network. In the
case of online malicious campaigns, the external observations
are largely incomplete with the clique structure mostly hidden.
Motivated by the above, in this paper we seek to address these
challenges in the following two questions: 1) How to deter-
mine that cliques exist on a graph and what is the detectabili-
ty condition prior to performing the partition to extract them?
2) Given the detectability condition how to partition a system
with no prior information on the clique structure?

For the first step, through spectral analysis we derive a hard
constraint on the detectability of clique structures under noises.
We show our results are a generalization of a previous work
under much simpler settings. Then based on the detectability
conditions, we propose a metric with which the cliques can be
accurately identified. We validate our results via simulation
and make comparison with existing heuristics to demonstrate
its advantages. Note that even though we have used the term
detectability, our focus in this paper is entirely on partitioning.
In this sense detectability refers to our ability to partition the
set of nodes into distinct cliques.

The remainder of the paper is organized as follows. We
formulate the problem in Section 2. Spectral analysis and main
results are provided in Section 3. We verify our results with
simulation in Section 4. Section 5 concludes our paper.

2. PROBLEM FORMULATION AND
PRELIMINARIES

The notion of clique (or group, cluster) generally reflects the
following phenomenon: 1) Members within a clique share sim-
ilar behavior, 2) A member shares higher similarity with oth-
ers in the same clique than with whose outside the clique (or
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those in a different clique). More precisely, consider a system
of N nodes (or users, individual, members, to be used inter-
changeably) interconnected through a graph G. Each node cor-
responds to a vertex vi, i = 1, ..., N on this graph. Graph G is
characterized by an adjacency matrix W = [Wi,j ]i,j=1,2,...,N ,
with edge weightsWi,j ∈ [0, 1] between any two vertices mod-
eling the strength of the connectivity (or similarities) which
further captures the probability of generating edges among the
users. There are k cliques in the system, denoted by ci, i =
1, 2, ..., k, that arose from the following type of adjacency ma-
trices:

Wi,j =

{
wink , i, j ∈ ck.

wout
i +wout

j

2 , i ∈ ci, j ∈ cj , ∀ci 6= cj .
(1)

Here wini and wouti , i = 1, 2, · · · , k are constants denoting
the in and out-edge weights of clique i, and it is assumed that
wini > wouti ,∀i = 1, 2, ..., k, reflecting the property 2) of a
clique we defined earlier. Denote by pini = |ci|

N , pouti = |c̄i|
N ,

i.e., pini , p
out
i are the fractions of vertices being in and out of

community ci. Naturally we have pini + pouti = 1, i = 1, ..., k.
First we establish the following proposition (algebraic details
omitted).

Proposition 1. Adjacency matrix W of k-community cliques
defined above can be re-written into the following format,

W =
k∑
i=1

(pini w
in
i + pouti wouti ) · (α∗i · ei · eTi + β∗i · 1 · 1T)︸ ︷︷ ︸

A

+

k∑
i=1

(pouti wini − pouti wouti ) · (α+
i · ui · uT

i + β+
i · 1 · 1

T) ,

with α∗i , β
∗
i , α

+
i , β

+
i being constants, ei,ui being constant

vectors and 1 the all one vector, and

Ai,j =

{
w̄k, i, j ∈ ck.

w̄p+w̄q

2 , i ∈ cp, j ∈ cq.

where w̄k = pink w
in
k + poutk woutk .

ei,ui do not convey any explicit meaning; instead later we
will show it is certain equation of them that does matter which
does not depend on any entries of them. Often times we do
not get to observe directly the interactions between individu-
als, but may obtain observations when they are on their own;
for example when edges on the graph are generated randomly
accordingly to the edge weights Wi,j . We will subsequent-
ly model the observed matrix as a combination of W and a
random component: W̃ = W +R, where W̃ denotes the mea-
sured or inferred connectivity matrix and R a random matrix
modeling the deviation between the observation process and
the average connectivity pattern. Moreover R is a symmetric
random matrix with independent elements with zero mean. A
typical approach in partitioning networks into cliques is to di-
rectly apply spectral analysis to W̃ , assuming the number of

cliques in the partition is known. A potential issue is that in
practice cliques may or may not actually exist which raises
the issue of how reliable these spectral methods are and how
to evaluate them. This problem was highlighted in a recent
work [7] which defined the notion of detectability and showed
that there exist conditions under which no spectral method will
return meaningful results. In the next section we will extend
this result to more general cases and derive the detectability
condition for partitioning the set into an arbitrary number of
possibly heterogeneous cliques.

3. SPECTRAL ANALYSIS OVER HETEROGENEOUS
K-CLIQUES STRUCTURE

3.1. Spectral analysis

We start with spectral analysis of W̃ . Based on Proposition 1
we further extract A from W̃ we have the modularity matrix
for W̃ defined as follows,

M =

k∑
i=1

Ci ·Ni ·
[
α+
i ·

ui · uT
i

Ni
+ β+

i ·
1 · 1T

Ni

]
+R ,

where Ci := pouti wini −pouti wouti . Note that the extracted term
is a square matrix with entries being the average total degree
of our random graph which relates closely to the modularity
matrix as introduced in [8] and [7]. Our derivation above gen-
eralizes the work in [7] where a simpler case with two homo-
geneous cliques is analyzed; it is easy to verify that our results
reduce to that in [7] with corresponding parameters. Make the
following substitution of parameters or normalization

ui :=
ui√
Ni
, vi :=

1√
Ni
, i = 1, ..., k. (2)

M =
k∑
i=1

CiNi ·
[
α+
i · ui · uT

i + β+
i · vi · vT

i

]
+R . (3)

Based on above reformulation, we have the following.

Lemma 2. For above random graph we have,∑k
i=1

1
Ci·Ni∑k

i=1
1
Ni

≤ Tr(zI−R)−1 , (4)

where Tr(·) is the trace function and z is eigenvalue ofM.

Proof. Let z,b beM’s eigen-value and vector we have{ k∑
i=1

CiNi ·
[
α+
i · ui · uT

i + β+
i · vi · vT

i

]
+R

}
b = zb .

Make the following change of notations

U = [
√
α+
i u1, ...,

√
α+
kuk], V = [

√
β+
1 v1, ...,

√
β+
k vk] ,

and denoteW as the diagonal matrix withWi,i = CiNi, and
re-arrange we have,

(zI−R)b = [U,V] · W · [U,V]T · b . (5)
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Multiplying by [U,V]T(zI−R))−1 on both sizes we have

W−1 = [U,V]T · (zI−R)−1 · [U,V] . (6)

Matching the terms on the diagonal of the matrices on both
sides we have ∀i = 1, ..., k

1

Ci ·Ni
=

n∑
j=1

α+
i · (uT

i xj)
2 + β+

i · (vT
i xj)

2

z − λj
. (7)

Since R is random, so are its eigenvectors xis. Taking expec-
tation of the above equation, since entries of xis are mutually
independent, the cross terms will cancel out and we have,

E

[
(
√
α+
i · u

T
i xj)

2

+ (
√
β+
i · v

T
i xj)

2]
=

∑
q∈ci E|xj(q)|

2

Ni
,

where xj(q) denote the qth element of xj. Adding up we have

E

{ k∑
i=1

[
(
√
α+
i · u

T
i xj)

2

+ (
√
β+
i · v

T
i xj)

2]}

=

k∑
i=1

∑
q∈ci E|xj(q)|

2

Ni
≤ (
∑
i

∑
q∈ci

E|xj(q)|2) · (
∑
i

1

Ni
)

= E|xj|2 ·
k∑
i=1

1

Ni
=

k∑
i=1

1

Ni
, (8)

here we have used the fact for random matrix R its eigenvec-
tors satisfy E|xj|2 = 1 (see [6] for details), which gives us,

k∑
i=1

1

Ci ·Ni
≤

k∑
i=1

1

Ni
·
n∑
j=1

1

z − λj
=

k∑
i=1

1

Ni
· Tr(z1−R)−1 .

Or in another format
∑k

i=1
1

Ci·Ni∑k
i=1

1
Ni

≤ Tr(z1−R)−1.

Denote LHS of Eqn. (4) as C̄−1 and define d̄ as the average
degree given by

d̄ =

k∑
i=1

|ci|
N
· (pini wini + pouti wouti ) . (9)

We now present the detectability results.

Theorem 3. Clique structures can be detected via spectral al-
gorithm if the following condition is met

C̄−1 ≤
√
N/d̄ . (10)

Proof. From spectral theory and [6] we know,

Tr(z1−R)−1 =
1

z

∞∑
q=0

TrRq

zq
, TrR2q = Nq+1 · d̄q · Catq ,

where Catq is the Catalan number. Therefore we further get

Tr(z1−R)−1 =
1

2 · d̄

[
z −

√
z2 − 4N · d̄

]
, (11)

from which we get z−
√
z2−4N ·d̄
2·d̄ ≥ C̄−1 . Consider first the

LHS we have

z −
√
z2 − 4N · d̄
2 · d̄

=
4N · d̄

2 · d̄ · (z +
√
z2 − 4N · d̄)

, (12)

which is a strictly decreasing function of z for z ≥ 0. And
moreover we have the leading eigenvalue of M as z1 ≤ d̄ ·
C̄−1 + N

C̄−1
. From z2 − 4N · d̄ ≥ 0 we have a necessary con-

dition for spectral detectability as z1 ≥
√

4N · d̄. We thus
have the transition of detectability happening at d̄ · C̄−1 +
N
C̄−1

=
√

4N · d̄ which further gives us the detectability con-

straint C̄−1 ≤
√
N/d̄.

Notice C̄−1 can be viewed as the inverse of harmonic mean
of Ci modulated by the community size Ni. To serve as a par-
tial validation of our results, we consider a special case when
there are only two homogeneous cliques as introduced in [6]
: C1 = C2 = C and N1 = N2 = N

2 and it follows that
the inequality in Eqn. (8) holds tightly. Furthermore LHS is 1

C
which is exactly the results reported in [6].

3.2. Clique identification

We show how to use this condition in the actual partitioning
task, by putting it in the context of a given clustering algorith-
m. We take spectral K-means as the base-line algorithm and
show how to combine spectral K-means with the detectability
results. The spectral K-means algorithm is introduced in [9]
and we refer interested reader to the paper for details.

With an input parameter k̂ (number of communities),
we execute the spectral K-means clustering and record al-
l results. Upon completion, denote the clustering results
as ĉi, i = 1, 2, ..., k̂ with each ĉi denoting the set of nodes
classified to cluster i. We then use these results to estimate
the parameters for the graph (e.g., win,wout) as follows :

p̃ini = |ĉi|
N , p̃outi = 1 − p̃ini , w̃

in
i =

∑
j,q∈ci

W̃j,q

|(j,q):j,q∈ci| , w̃
out
i =∑

j∈ci,q/∈ci
W̃j,q

|(j,q):j∈ci,q /∈ci| . We name the set of parameters {p̃ini , p̃outi ,
w̃ini ,w̃outi , ĉi}ki=1 as the empirically estimated community
structure. Denote the tuple by Ck̂. We then proceed to calcu-
late parameters d̄(Ck̂) and C̄−1(Ck̂) for Ck̂ and check whether

the detectability condition holds: C̄−1(Ck̂) ≤
√
N/d̄(Ck̂) .

There are three possibilities as a result of the detectability
check: 1) There is no k̂ such that Ck̂ passes the detectability
check. This case essentially implies there is no clique structure
detectable from the data. 2) There is a unique k̂ that satisfies
Eqn.(10), in which case we have identified the only possible
hidden clique structure. 3) The trickier case is when there
exists multiple k̂ such that the detectability check passes1. We
address this issue in the rest of this section.

1In general the K-means clustering algorithm is run repeatedly to identify
the best K regardless of the criteria used for selection. This is the case with
all algorithms we compare in the next section.
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We propose the following optimization problem towards
resolving the issue,

maxk̂ |C̄−1 −
√
N/d̄|, s.t. C̄−1 ≤

√
N/d̄ .

It is straightforward to see that in the above we have used the
detectability gap to capture the clustering performance. The in-
tuition is as follows. C̄−1 is the inverse of the harmonic mean
of wini − wouti , i = 1, 2, ..., k. Therefore the larger the differ-
ence between in- and out-weights is , the smaller the C̄−1 is
and so the easier detecting community structures is. Consider
the second term. From spectral theory, we have the follow-
ing upper bounds on the difference between vector spaces (the
norm difference). d(VW − VŴ ) ≤ ||R||F

δ , with δ defined as
δ = λ1(W ) − λ2(W ) (the difference between the largest and
second largest eigenvalues). Notice

||R||F = Tr(RTR) = Tr(R2) = N2 · d̄ · Cat1 , (13)

i.e., with N and Cat1 being constant and to minimize the dis-
tance between two spectral spaces, it is equivalent with min-
imizing the average degree term d. Therefore our proposed
metric |C̄−1 −

√
N/d̄| is in this sense a combination of above

trade-offs.

4. NUMERICAL RESULTS

4.1. Validation

We simulate a network with N nodes, where each node is ran-
domly associated with one of k cliques. In- and Out-statistics
of cliques are randomly generated but with the expected In-
edge weight being strictly larger than the Out-weights. For
each simulation run, an edge is randomly generated for each
pair of nodes based on their edge weights (higher weights in-
curs a higher probability of connection).

N\k 2 3 4 5 6

100 56% 57% 46% 55% 85%
200 60% 57% 64% 0.50 58%
500 78% 58% 44% 61% 51%

1000 66% 62% 64% 52% 50%

(a) Detection rate
N\k 2 3 4 5 6

100 91% 88% 78% 100% 100%
200 84% 96% 88% 90% 100%
500 100% 94% 86% 96% 94%
1000 92% 92% 88% 90% 92%

(b) Detection rate (within ±1 neighborhood)

Table 1: Simulation results

We repeat the above experiments and record our algorith-
m’s performance measured by the rate of correctly determining
the number of cliques. The results are summarized in Table 1.
From the simulation results we see with a reasonable confi-
dence (with majority of the entries in Table 1 being larger than
50%) we can accurately identify the hidden community struc-
ture while with very high probability (most being larger than
90% and lower bounded by 80%) our detection results is no
further away from the true quantity by 1.

4.2. Performance comparison

We next compare our results with the following two heuristic-
s that have been widely adopted for deciding the number of
communities k in algorithms, for example spectral K-means.

1. Average Degree : The optimal k∗ is determined as the
number that gives the maximum average difference be-
tween In- and Out-degrees [5].

2. Spectral Method : The selection criteria is decided by
eigenvalues. Denote all eigenvalues for W̃ as λ1, ..., λN .
Then the number of defined as the number k such that
sum of eigenvalues

∑k
i=1 λk being large enough [11].

Performance comparisons are shown in Figure (1a)-(1b). From
Figure (1a) we see after k becomes larger than 2, the detec-
tion rates of the above two heuristics drop quickly while our
method remains reasonably accurate. In Figure (1b) we show
the performance comparison for detection within ±1 neighbor
(i.e., we count an identification as correct when it falls within
±1 neighborhood of the correct k). Similarly the performance
of Average Degree drops quickly while the other two stays rel-
atively steady. However, our method clearly outperforms the
Eigenvalue based method.
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(a) Perfect detection
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(b) Detection within ±1 neighborhood

Fig. 1: Performance comparison

5. CONCLUSION

In this work we consider a problem of uncovering clique(s)
from noisy observations, where hidden connectivities remain
unknown. We derived the spectral detectability conditions for
a random (dues to noisy observations) adjacency matrix, based
on which we propose a metric/methodology to construct the
procedure of identifying hidden cliques with no prior informa-
tion on its structures’ statistics. Simulation results validate our
method and show clearly its advantages over existing heuris-
tics.
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