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ABSTRACT
Multifractal analysis is a powerful tool used in signal processing.
Multifractal models are essentially characterized by two parameters,
the multifractality parameter c2 and the integral scale A (the time
scale beyond which multifractal properties vanish). Yet, most ap-
plications concentrate on estimating c2 while the estimation of A
is in general overlooked, despite the fact that A potentially conveys
important information. Joint estimation of c2 and A is challeng-
ing due to the statistical nature of multifractal processes (i.e. the
strong dependence and non-Gaussian nature), and has barely been
considered. The present contribution addresses these limitations and
proposes a Bayesian procedure for the joint estimation of (c2,A).
Its originality resides, first, in the construction of a generic multi-
variate model for the statistics of wavelet leaders for multifractal
multiplicative cascade processes, and second, in the use of a suit-
able Whittle approximation for the likelihood associated with the
model. The resulting model enables Bayesian estimators for (c2,A)
to also be computed for large sample size. Performance is assessed
numerically for synthetic multifractal processes and illustrated for
wind-tunnel turbulence data. The proposed procedure significantly
improves estimation of c2 and yields, for the first time, reliable esti-
mates for A.

Index Terms— Multifractal Analysis, Integral Scale, Wavelet
Leaders, Bayesian Estimation, Whittle Likelihood

1. INTRODUCTION

Context. Scale invariance provides practitioners with a powerful
concept for real-world data analysis. It has been used in a large
variety of applications of very different natures, e.g., biomedical ap-
plications (body rhythms [1], infra slow brain activity [2]), hydro-
dynamic turbulence [3]), geophysics [4], finance [5], Internet traffic
[6], to name but a few. Scale invariance implies that the temporal
dynamics of data are not driven by any particular scale that could
play a privileged role in analysis. Instead, a large continuum of time
scales equally contributes to temporal dynamics. From a practical
perspective, this translates into power law behaviors of the sample
moments of well chosen multi-scale quantities TX(a, t) (quantities
depending jointly on time t and scale a, e.g., wavelet coefficients),

S(q, j) ≡ 1

nj

nj∑
k=1

|TX(a, k)|q ' aζ(q), am ≤ a ≤ aM . (1)

The goal of scale invariance is hence to estimate the scaling expo-
nents ζ(q) that characterize the mechanisms relating scales.
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Multifractal analysis consists of a specific instance of scale in-
variance analysis (cf. e.g., [7]). It notably enables discrimination
between two classes of processes commonly used to model scale in-
variance: self-similar processes, characterized by ζ(q) ≡ qH and an
underlying additive structure [8], fractional Brownian motion (fBm)
being the celebrated representative member [9]; multifractal mul-
tiplicative cascades (hereafter denoted MMC), characterized by a
strictly concave ζ(q) and an underlying multiplicative structure [3].
Deciding which model is preferred by data is of utmost importance
in applications as it may significantly modify the understanding and
interpretations of the underlying mechanisms producing the data.

The scaling exponents ζ(q) of MMC can be expanded as a func-
tion of q, ζ(q) = c1q+ c2q

2/2 + . . . , with strictly negative c2 < 0,
while ζ(q) = qH and c2 ≡ 0 for self-similar processes. The dis-
crimination between self-similar processes and MMC can thus be
recast into testing c2 ≡ 0 versus c2 < 0 (cf. e.g, [10, 11]) and c2
is therefore often referred to as the multifractality or intermittency
parameter. The second fundamental difference between self-similar
processes and MMC is that the power law relation in (1) theoretically
holds for all scales a > 0 for self-similar processes, while it holds
only within a range of scales that is necessary bounded from above,
0 < a ≤ A, for MMC. This upper bound is commonly referred to
as the integral scale [3, 12].

While most research concentrates on the estimation of the sole
parameter c2, the integral scale A has mostly been overlooked. Yet,
it conveys fundamental information since it subtly reintroduces a no-
tion of typical (decorrelation) time scale within the scale invariance
framework (cf. [13] for a review). This may provide insights into
the mechanisms underlying data production. The estimation of the
integral scaleA constitutes the core topic of the present contribution.
Related work: Joint estimation of c2 and A. It is now well un-
derstood that the estimation of c2 (and the detection of deviations
of ζ(q) from a linear behavior in q) should be based on recently
proposed refined multi-scale quantities termed wavelet leaders, cf.,
e.g., [7, 10]. The estimation of c2 essentially relies on linear re-
gressions across scales, motivated by (1) and variations (cf., (2) in
Section 2). To improve estimation (notably for small sample size),
a generalized moment approach has been proposed, relying strongly
on fully parametric models [14] and hence is of limited applicabil-
ity to real-world data. Alternatively, the use of Bayesian models was
proposed but remained mostly restricted to the estimation of the self-
similarity parameter for Gaussian processes [15–17]. Only recently,
new Bayesian models were proposed for the estimation of c2, either
by considering specific properties of certain processes [18] or by ex-
ploiting generic properties of wavelet leaders [19] that are valid for
large classes of MMC.

In contrast, the estimation of the integral scale A has received
limited attention. In certain applications, the order of magnitude of
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the integral scale can be approximately inferred from a priori avail-
able physical parameters (typically flow size, average flow speed,
. . . , e.g., for climatology and rainfall analysis [20,21] and for hydro-
dynamic turbulence [12, 22–24]), while this is not possible in most
other applications. At the methodological level, an extension of the
generalized moment approach to the estimation of the integral scale
was proposed in [25] (see also [24]), yet with limited use in applica-
tions due to the requirement of fully parametric models.
Contributions. The present work aims at developing a Bayesian
model for the joint estimation of the multifractality parameter c2
and the integral scale A. The procedure generalizes [19], which
proposed the first wavelet-leader based Bayesian estimator for the
sole parameter c2, yet assumes A ≈ n and is intractable for sample
size n larger than n ∼ 103. The main contributions of the present
work lie, first, in the generalization of the statistical model proposed
in [19] to A ≤ n, enabling the formulation of a joint estimator for
(c2,A), and second, the use of a suitable Whittle likelihood in the
Bayesian procedure [26–29], enabling the use for large sample sizes.

We first propose a semi-parametric model for the statistics of
the log-wavelet leaders of MMC, motivated by the asymptotic co-
variance of the logarithm of multiscale quantities associated with
these processes (c.f. [3]). The model is generically valid for this
class of processes, for all values of A. It imposes minimal model
assumptions on data (essentially, (2) below) and involves few pa-
rameters (effectively, c2 and A, cf. Section 3.1). From this model, a
Bayesian estimation procedure for (c2,A) is developed by assigning
an appropriate prior distribution to the parameters, reflecting the con-
straints inherent to the multifractal model. To explore the resulting
posterior distribution and generate samples used to approximate the
Bayesian estimators, a suitable MCMC random-walk Metropolis-
Hastings sampling scheme is devised (cf. Section 3).

The direct evaluation of the likelihood in the MCMC scheme
would require, at each iteration, the inversion of a dense matrix of
size essentially of the order of the sample size n, which is prohibitive
both numerically and computationally for large n. To overcome this
difficulty, we propose to approximate the exact likelihood induced
by the multifractal model by an appropriate Whittle likelihood (cf.
Section 4). The resulting algorithm for the joint estimation of c2 and
A is effective for both small and large sample sizes. Its performance
is assessed by means of Monte Carlo simulations, showing the clear
benefits of the Bayesian estimator over linear regressions for the es-
timation of c2, and its effectiveness for the reliable estimation of the
integral scaleA (cf. Section 5). Finally, we illustrate the potential of
the proposed Bayesian procedure for the analysis of a high-quality
real-world data set of wind-tunnel turbulence.

2. MULTIFRACTAL ANALYSIS

Discrete wavelet transform. A mother wavelet ψ0(t) is a ref-
erence pattern with narrow supports in both time and frequency do-
mains. It is characterized by its number of vanishing momentsNψ ≥
1 (∀k = 0, 1, . . . , Nψ − 1,

∫
R t
kψ0(t)dt ≡ 0 and

∫
R t
Nψψ0(t)dt 6=

0). Also, it is chosen such that the collection {ψj,k(t) ≡ 2−j/2

ψ0(2−jt − k), j ∈ N , k ∈ N} forms a basis of L2(R). The
discrete wavelet transform (DWT) coefficients of X are defined as
dX(j, k) = 〈X,ψj,k〉, cf., e.g., [30] for further details.
Wavelet leaders. Let λj,k = [k2j , (k + 1)2j) denote the dyadic
interval of size 2j and 3λj,k the union of λj,k with its 2 neigh-
bors. The wavelet leaders are defined as the largest wavelet coef-
ficient in the neighborhood 3λj,k over all finer scales, `(j, k) :=
supλ′⊂3λj,k

|dX(λ′)| [7, 31].

Multifractal formalism. The wavelet leader scaling function
is defined as ζ(q) = lim infj→−∞

[
lnS(j, q)

/
ln 2j

]
where

S(j, q) = 2j
∑
k `(j, k)q are the empirical moments of order q of

the wavelet leaders of X at scale j. The function ζ(q) is intimately
tied to the multifractal spectrum D(h), defined as the Hausdorff
dimensions of the sets of points with same pointwise regularities h,
via a Legendre transform, D(h) ≤ L(h) := infq∈R[1 + qh− ζ(q)].
It can be shown that this inequality is strict for large classes of mul-
tifractal processes. The Legendre spectrum L(h) is thus practically
often confounded with the theoretical spectrum D(h), see [10, 31].
Log-cumulant expansion. It is often advantageous in applica-
tions to work with the leading order coefficients of the polynomial
expansion ζ(q) =

∑
m≥1 cmq

m/m! of the scaling function. This
expansion directly translates toD(h), see [31]. In particular, the first
log-cumulant c1 is identical to the position of the mode ofD(h) (i.e.,
the average smoothness), and the second log-cumulant c2 is directly
related to its width (i.e., the degree of regularity fluctuations). The
seminal work [32] shows that the cm are directly related to the cu-
mulants of order m of the log-wavelet leaders, Cumm[ln `(j, k)] =
c0m + cm ln 2j and specifically,

C2(j) ≡ Var [ln `(j, k)] = c02 + c2 ln 2j . (2)

The parameter c2 can thus be estimated by linear regression of the
sample variance (denoted V̂ar ) of ln `(j, ·) against scale j ∈ [j1, j2]

ĉ2 =
1

ln 2

j2∑
j=j1

wjV̂ar [ln `(j, k)] (3)

where wj are suitable regression weights, see [6, 10] for details.

3. BAYESIAN ESTIMATION

3.1. Model for the multivariate statistics of log-wavelet leaders

Let l(j, k) = ln `(j, k) denote the log-wavelet leaders. We propose
a model for the multivariate statistics of l(j, ·) of MMC that gener-
alizes the model in [19] to MMC with integral scale A ≤ n.
Marginal distributions. It has been shown in [19] that the
marginal distribution of l(j, ·) of MMC can be approximated by
a Gaussian distribution. This is illustrated in Fig. 1 (top row) for
different integral scale values for the process described in Section 5.
Covariance. The numerical studies reported in [19] suggest that
the covariance of the logarithm of wavelet leaders of MMC at fixed
scale j, Σj(∆k) := Cov[l(j, k), l(j, k + ∆k)], is characterized by
a logarithmic decay controlled by the parameter c2

Σj(∆k) ≈ η + c2(ln ∆k + ln 2j) =: γ
(1)
j (∆r; c2, η) (4)

for 3 ≤ ∆k ≤ nj
A
n

, where nj ≈ bn/2jc denotes the number of
wavelet leaders at scale j (see also [33] for results obtained for log-
wavelet coefficients of 1D random wavelet cascades). Second, the
theoretical variance of the log-wavelet leaders is given by C2(j) =
C2(j; c2, c

0
2) defined in (2). Finally, we propose to model the short-

term covariance as a logarithmic decay from C2(j; c2, c
0
2) at ∆k =

0 to γ(1)
j (∆r; c2, η) at ∆k = 3,

γ
(0)
j (∆k; c2, c

0
2, η) := C2(j; c2, c

0
2)+(

ln(∆k + 1)/ ln 4
)(
γ
(1)
j (3; c2, η)− C2(j; c2, c

0
2)
)
. (5)

By combining (2), (4) and (5), we obtain the following model for the
covariance of log-wavelet leaders, parametrized by θ = [c2, c

0
2, η]T

γj(∆k;θ) =


C2(j; c2, c

0
2) ∆k = 0

γ
(0)
j (∆k; c2, c

0
2, η) 0 < ∆k ≤ 3

max[0, γ
(1)
j (∆k; c2, η)] 3 < ∆k ≤ nj .

(6)
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Fig. 1: Top row: quantile-quantile plots of ln `(j = 3, k) against
standard normal. Bottom row: Empirical covariances of ln `(j =
3, k) (red solid) and model (6) (blue dashed). Left to right: J =
{16, 12, 8}, respectively. Results obtained for MRW as in Section 5.

Here, the restriction of γ(1)
j to positive values encodes the range of

validity, 3 ≤ ∆k ≤ nj An , of (4). The model is illustrated in Fig. 1.
Integral scale. The integral scale A corresponds to the typical
correlation length of the data. It is therefore directly related to the
pair (η, c2) in (4) through the equation

J = J (η, c2) := log2(A) = −η/(c2 ln(2)).

Note that η was not a model parameter in [19] but an a priori fixed
heuristic constant, unrelated to the integral scale A of the data.

3.2. Bayesian model

Let lj denote the vector of the nj centered log-leaders l(j, k) −
l̄X(j, .) and Γj(θ) the corresponding nj × nj covariance matrix
with entries given by the parametric covariance (6), respectively.
Likelihood. Due to the Gaussian properties of the log-wavelet
leaders, the likelihood of the vector L = [lTj1 , ..., l

T
j2 ]T is given by

f(L|θ) =
∏j2
j=j1

L(lj |θ) with

L(lj |θ) :=
(
(2π)nj det Γj(θ)

)− 1
2 exp

(
− 1

2
lTj Γj(θ)−1lj

)
. (7)

Prior distribution. The parameter vector θ = [c2, c
0
2, η]T must be

chosen such that the variances of l(j, k) are positive, i.e.,C2(j) ≥ 0.
We define the admissible set I = (I+ ∪ I−) ∩ Im, where I− =
{θ ∈ R3|c2 < 0 and c02 + c2 j2 ln 2 > 0}, I+ = {θ ∈ R3|c2 >
0 and c02 + c2 j1 ln 2 > 0}, Im = {θ ∈ R3||c02| < c0,m2 , |c2| <
cm2 , |η| < ηm} and cm2 , c

0,m
2 , ηm are the largest admissible values

for c2, c02 and η. Without additional prior information regarding
θ, a uniform prior distribution on the set I is assigned to θ, i.e.,
P(θ) = UI(θ) ∝ 1I(θ), where 1I is the indicator function of I.
Posterior distribution and Bayesian estimators. The posterior
distribution of θ is obtained from the Bayes rule

f(θ|L) ∝ f(L|θ) P(θ) (8)

and can be used to define the maximum a posteriori (MAP) and min-
imum mean squared error (MMSE) estimators in (9) below.

3.3. Gibbs sampler

The following Gibbs sampler enables the generation of samples
{θ(t)}Nmc1 that are asymptotically distributed according to the pos-
terior distribution (8). The Gibbs sampling strategy consists of

successively sampling according to the conditional distributions
associated with f(θ|L). To sample according to the conditional
distributions, a Metropolis-within-Gibbs procedure is used, defined
by random walks with Gaussian instrumental distributions. More
precisely, at iteration #t, the three following moves are considered.
Sampling according to f(c

(t)
2 |c

0,(t−1)
2 , η(t−1),L). A candidate

c∗2 is generated according to the proposal distribution qc2(c∗2|L) =

N (c
(t−1)
2 , σ2

c2). It is accepted (c(t)2 = c∗2) or rejected (c(t)2 = c
(t−1)
2 )

according to the Metropolis-Hastings ratio rc2 .
Sampling according to f(c

0,(t)
2 |c(t)2 , η(t−1),L). A candidate c0,∗2

is generated according to the proposal distribution qc02(c0,∗2 |L) =

N (c
0,(t−1)
2 , σ2

c02
) and accepted (c0,(t)2 = c0,∗2 ) or rejected (c0,(t)2 =

c
0,(t−1)
2 ) according to the Metropolis-Hastings ratio rc02 .

Sampling according to f(η(t)|c(t)2 , c
0,(t)
2 ,L). A candidate η∗

is generated according to the proposal distribution qη(η∗|L) =

N (η(t−1), σ2
η). It is accepted (η(t) = η∗) or rejected (η(t) =

η(t−1)) according to the Metropolis-Hastings ratio rη .
The Metropolis-Hastings acceptance ratios are defined by rθ =

f(θ∗|L)
f(θ(t−1)|L)

qθ(θ
(t−1)|L)

qθ(θ
∗|L) . The variances σ2

(·) of the instrumental dis-
tributions are adjusted to ensure acceptance ratios belonging to the
interval [0.4, 0.6]. For details about MCMC methods, see, e.g., [34].
Bayesian estimators. After a burn-in period of Nbi samples, the
Gibbs sampler generates NB = Nmc − Nbi samples {θ(t)}NmcNbi+1

that are distributed according to (8) and used to approximate the
Bayesian estimators

θ̂
MMSE

≈ 1

NB

Nmc∑
t=Nbi+1

θ(t), θ̂
MAP

≈ argmax
t>Nbi

f(θ(t)|L). (9)

4. WHITTLE APPROXIMATION

The Gibbs sampler requires inversion of the dense nj × nj matrices
Γj(θ) in each sampling step. For large sample size, this is practi-
cally intractable both for practical (computation time) and numerical
(growing condition number of Γj(θ)) reasons. To handle large sam-
ple sizes, we replace the exact likelihood (7) with the approximate
Whittle likelihood [26, 27]. Up to an additive constant, the Whittle
approximation for the negative log-likelihood is given by

−lnL(lj |θ) ≈ W(lj |θ) :=
1

2

∑
ω

lnϑj(ω|θ)+
Πj(ω)

njϑj(ω|θ)
(10)

where Πj(ω) := |
∑nj
k=1 l(j, k) exp(iωk)|2 is the periodogram of

{l(j, k)}k∈Pj and ϑj(ω|θ) = |
∑nj
k=1 γj(∆k;θ) exp(iωk)| is the

Fourier transform of the covariance function (6).
The Whittle likelihood that replaces (7) in (8) is hence, up to a

multiplicative constant, given by

f(L | θ) ≈ fW(L | θ) := exp

(
−

j2∑
j=j1

W(lj ,θ)

)
. (11)

5. RESULTS

We quantify the estimation performance of the proposed procedure
by applying it to a large number R of independent realizations of a
synthetic multifractal process, the multifractal random walk (MRW),
with different prescribed integral scale values. MRW is chosen here
as a prominent member of the class of multifractal multiplicative
cascade based processes. MRW is a non Gaussian process with sta-
tionary increments. Its multifractal properties mimic those of the
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Fig. 2: Estimation of c2 (top row) andJ = log2(A) (bottom row) as
a function of the integral scale J = log2(A); average (left column),
standard deviation (center column) and RMSE (right column).

8 10 12 14 16
0

0.2
0.4
0.6
0.8

1

J
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Fig. 3: Correlation coefficient of ĉ2 and Ĵ as a function of J .

celebrated Mandelbrot’s multiplicative log-normal cascades. Equiv-
alent results are obtained for other multiplicative cascade based pro-
cesses and are not reported here for space reasons. MRW has been
introduced in [35] asX(k) =

∑n
k=1GH(k)eω(k) whereGH(k) are

the increments of a fractional Brownian motion with parameter H ,
and ω is a Gaussian process that is independent of GH and has non-
trivial covariance Cov[ω(k1), ω(k2)] = −c2 ln

(
A

|k1−k2|+1

)
when

|k1 − k2| < A and 0 otherwise. MRW has scaling properties as in

(1) for q ∈
[
−
√

2
−c2

,
√

2
−c2

]
, with ζ(q) = (H − c2)q + c2q

2/2.

Numerical simulation. The process parameters are set to H =
0.72, c2 = −0.03 and J = log2(A) ∈ {8, . . . , 16}. We use a
Daubechies’ wavelet withNψ = 2 vanishing moments and the range
of scales [j1, j2] = [3, 6] for estimation (j2 is fixed to the scaling
range for J = 8 and could be chosen larger for larger J ). We use a
sample size n = 218, and Nbi = 3000, Nmc = 4000 in the Gibbs
sampler. Estimation performance is quantified via the average, the
standard deviation and the root mean squared error (RMSE) of the
estimates of θ ∈ {c2,J } over R = 100 realizations, defined as

m(θ̂)= Ê[θ̂], s(θ̂)=

√
V̂ar[θ̂], r(θ̂)=

√
(m(θ̂)− θ)2 + s(θ̂)2.

Estimation of multifractality parameter c2. We first compare
the linear fit estimator (3) for c2, denoted LF, with the proposed joint
MAP estimator for (c2,J ), denoted MAP; results for the MMSE
estimators are similar to MAP and not reproduced here. Results are
reported in Fig. 2 (top row), as a function of integral scale J . They
indicate that the Bayesian estimator yields excellent estimates for c2,
of remarkably better quality than LF: notably, MAP has significantly
smaller standard deviations and bias, resulting in RMSE values that
are only one quarter of those of LF (at the price of increased compu-
tational cost of ∼ 1min for MAP versus� 1s for LF).
Estimation of Integral Scale J . Results for the estimation of the
integral scale J obtained by the proposed procedure are reported
in Fig. 2 (bottom row; note that LF can not provide estimates of
J ). They clearly indicate that the proposed procedure is effective
and yields consistent estimates of J for the entire range from very
small (J = 8) to large (J = 16) integral scales (hence, correlation
lengths) considered here. In particular, the bias is found to be signif-

5 10 15 20
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c 2

run
5 10 15 20

11

11.5

12

12.5

13 J

run

Fig. 4: Joint Bayesian estimation of c2 (left) and integral scale J =
log2(A) (right) for wind-tunnel turbulence data as a function of runs.

icantly below standard deviations, and RMSE values are below 10%
of the value ofJ . Estimation performance decreases with increasing
J due to the increasing correlation length of ∼ 2J samples: RMSE
values rise from 2% (J = 9) to 6% (J = 15) of the value of J .
Correlation between c2 and J . Fig. 3 plots the sample correla-
tion coefficient ρ(ĉ2, Ĵ ) of the estimates of (c2,J ). For large val-
ues of J , c2 and J show relatively strong correlation. For smaller
values of J , ρ(ĉ2, Ĵ ) decreases since the variances C2(j) (con-
trolled by c2 only) become more dominant over the covariance term
γ
(1)
j (∆k; c2, η) (jointly controlled by c2 and J ) in (6) (cf. Fig. 1).

Application to Turbulence data. We illustrate the proposed pro-
cedure for a large wind-tunnel turbulence data set consisting of high
sampling rate longitudinal Eulerian velocity signals, measured with
hot-wire anemometry techniques. The dataset, made available to us
by Y. Gagne [23], consists of R = 24 independent runs of n = 220

samples each, with (Taylor scale based) Reynolds number Rλ ≈
2000, integral scale A = 213, and Taylor scale 24. Estimation pa-
rameters are set as in [10] (i.e., [j1, j2] = [6, 10] and Nψ = 3).

Results are reported in Fig. 4 (c2 (left) and J = log2A (right))
for each individual run and indicate that the proposed procedure
yields highly consistent estimates for the different runs, both for c2
andJ . The averages (standard deviations) of the estimates are found
to be −0.016 (0.001) for c2 and 11.78 (0.31) for J , respectively.
In view of the above reported results for synthetic data, estimates for
J are within one standard deviation and hence in agreement with
the value J = 13 inferred based on Taylor scale in [23].

6. CONCLUSION

To the best of our knowledge, this paper studied the first Bayesian
procedure for the joint estimation of the multifractality parameter c2
and (log-) integral scale J that is operational and can be applied to
real-world data. It relies on a novel generic semiparametric model
for the statistics of the logarithm of wavelet leaders of multiplicative
cascade based multifractal processes. A Gibbs sampler is designed
to produce samples according to the joint posterior distribution of the
multifractal parameter vector, incorporating the multifractal model
constraints, which are used to approximate the Bayesian estimators.
Computational efficiency of the procedure and applicability to large
sample sizes are made possible by using the approximate Whittle
likelihood in the sampler. The procedure enables reliable estimation
of the integral scale J , previously barely achieved. It significantly
improves estimation for the multifractality parameter c2 over stan-
dard linear regression based estimators, reducing standard deviations
and RMSE values to 25% of those of linear fit based estimation (at
the price of increased computational cost). The procedure is cur-
rently being used in the study of 24 hours long heart rate variability
time series. Future work will include the extension of the proposed
procedure to 2D images and the development of a relevant statistical
framework for the multifractal analysis of multivariate time series.

MATLAB codes implementing the proposed procedure, written
by the authors, are publicly available at http://www.irit.fr/∼Herwig.Wendt/.
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