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ABSTRACT

The approximation of linear time-invariant (LTI) systems by sam-
pling series is an important topic in signal processing. However, the
convergence of the approximation series is not guaranteed: there ex-
ist stable LTI systems and bandlimited input signals such that the
approximation series diverges, regardless of the oversampling factor
and the sampling pattern. Recently, it has been shown that this di-
vergence can be overcome by using measurement functionals instead
of pointwise sampling. However, the bandwidth of the approxima-
tion series needs to be strictly larger than the signal bandwidth. In
this paper we derive a two channel system approximation approach
based on measurement functionals that converges for all stable LTI
systems and all signals in the Paley–Wiener space PW1

π . Thanks to
the two channel structure it is possible to achieve an approximation
bandwidth that is equal to the signal bandwidth.

Index Terms— bandlimited signal, linear time-invariant system,
approximation, measurement functional, two channel approach

1. INTRODUCTION

Sampling theory plays a fundamental role in modern signal and in-
formation processing, because it is the basis for today’s digital world.
In his seminal work [1] Shannon started this theory. The reconstruc-
tion of bandlimited signals from their samples is also widely used in
other applications and theoretical concepts [2–4]. For an overview
of existing sampling theorems see for example [2, 5], and [6].

Although the sampling theorems are very important on their
own, they do not reflect the actual purpose of signal processing. The
core task of signal processing is to process data. This means that,
usually, the interest is not in a reconstruction of the sampled signal
itself, but in some processed version of it. This might be the deriva-
tive, the Hilbert transform or the output of any other stable linear
system T . Thus, the goal is to approximate the desired transform Tf
of a signal f by an approximation process which uses only finitely
many, not necessarily equidistant, samples of the signal f .

A common approach to do this approximation is to use

∞∑
k=−∞

f(tk)(Tφk)(t), t ∈ R, (1)

where {tk}k∈Z denotes the sequence of sampling points, and the φk
are certain reconstruction functions. Exactly as in the case of signal
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reconstruction, the convergence and approximation behavior of (1)
is important for practical applications [7].

In [8] it was shown that (1) is not always stable, i.e, that there
exist stable LTI systems T and bandlimited signals f such that (1)
diverges, regardless of the oversampling factor. However, as proved
in [9], if suitable measurement functionals are used instead of point-
wise sampling, then the divergence can be overcome and the ob-
tained system approximation process is convergent for all systems
and signals. It is important to note that in the approach of [9], the
bandwidth of the reconstruction functions and thus the bandwidth of
the approximation process needs to be strictly larger than the band-
width of the input signal f .

In this paper we will develop a two channel system approxima-
tion process that is based on measurement functionals, and which
has, in contrast to the approach in [9], exactly the same bandwidth
as the input signal. Such a behavior is desirable for practical applica-
tions, where out-of-band noise due to an increase of the bandwidth
by the system approximation process may not be permissible.

Before we describe the measurement functionals and the pro-
posed method in more detail, we need to introduce some notation.

2. NOTATION

Let f̂ denote the Fourier transform of a function f , where f̂ is
to be understood in the distributional sense. Lp(R), 1 ≤ p <
∞, is the space of all measurable, pth-power Lebesgue inte-
grable functions on R, with the usual norm ‖ · ‖p, and L∞(R)
the space of all functions for which the essential supremum norm
‖ · ‖∞ is finite. For σ > 0 and 1 ≤ p ≤ ∞ we denote by
PWp

σ the Paley-Wiener space of functions f with a represen-
tation f(z) = 1/(2π)

∫ σ
−σ g(ω) e

izω dω, z ∈ C, for some
g ∈ Lp[−σ, σ]. The norm for PWp

σ , 1 ≤ p < ∞, is given by
‖f‖PWp

σ
= (1/(2π)

∫ σ
−σ|f̂(ω)|

p dω)1/p.
We briefly review some definitions and facts about stable linear

time-invariant (LTI) systems. A linear system T : PWp
π → PWp

π ,
1 ≤ p ≤ ∞, is called stable if the operator T is bounded, i.e., if
‖T‖ := sup‖f‖PWpπ≤1‖Tf‖PWp

π
< ∞. Furthermore, it is called

time-invariant if (Tf( · − a))(t) = (Tf)(t− a) for all f ∈ PWp
π

and t, a ∈ R. For every stable LTI system T : PW1
π → PW1

π there
exists exactly one function ĥT ∈ L∞[−π, π] such that

(Tf)(t) =
1

2π

∫ π

−π
f̂(ω)ĥT (ω) e

iωt dω, t ∈ R, (2)

for all f ∈ PW1
π . Conversely, every function ĥT ∈ L∞[−π, π]

defines a stable LTI system T : PW1
π → PW1

π . The operator
norm of a stable LTI system T is given by ‖T‖ = ‖ĥ‖L∞[−π,π].
Furthermore, it can be shown that the representation (2) with ĥT ∈
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L∞[−π, π] is also valid for all stable LTI systems T : PW2
π →

PW2
π . Therefore, every stable LTI system that mapsPW1

π inPW1
π

mapsPW2
π inPW2

π , and vice versa. Note that ĥT ∈ L∞[−π, π] ⊂
L2[−π, π], and consequently hT ∈ PW2

π .

3. BASICS OF NON-EQUIDISTANT SAMPLING

In classical non-equidistant sampling, the goal is to reconstruct a
bandlimited signal f from its non-equidistant samples {f(tk)}k∈Z,
where {tk}k∈Z is the sequence of sampling points. One possibility
to do the reconstruction is to use the sampling series

∞∑
k=−∞

f(tk)φk(t), t ∈ R, (3)

where the φk, k ∈ Z, are certain reconstruction functions.
If the sequence of sampling points {tk}k∈Z is a real complete

interpolating sequence for PW2
π , which is ordered strictly increas-

ingly, then the product

φ(z) = z lim
N→∞

∏
|k|≤N
k 6=0

(
1− z

tk

)
(4)

converges uniformly on |z| ≤ R for all R < ∞, and φ is an entire
function of exponential type π [10]. Without loss of generality, we
assumed in (4) that t0 = 0. It can be seen from (4) that φ, which is
often called generating function, has the zeros {tk}k∈Z. Moreover,
it follows that

φk(t) =
φ(t)

φ′(tk)(t− tk)
is the unique function in PW2

π that solves the interpolation problem
φk(tl) = δkl, where δkl = 1 if k = l, and δkl = 0 otherwise.

Remark 1. Equidistant sampling with tk = k, k ∈ Z, is a special
case of the more general non-equidistant setting. For equidistant
sampling we have φk(t) = sinc(t − k), k ∈ Z, and (3) reduces to
the ordinary Shannon sampling series.

4. GENERAL MEASUREMENT FUNCTIONALS

A key concept in signal processing is to process analog, i.e.,
continuous-time signals in the digital domain. The first step in this
procedure is to convert the continuous-time signal into a discrete-
time signal, i.e., into a sequence of numbers. As in (3), usually
the point evaluation functionals ck : f 7→ f(tk) are employed
to do this conversion. However, it is also possible to use more
general measurement functionals [11–15]. For example, function-
als that take the average of the signal over an interval, like in
ck : f 7→ 1

2δ

∫ tk+δ
tk−δ

f(t) dt, where δ is some small positive number.
The approximation of Tf by the system approximation process

(1) can be seen as an approximation that uses the biorthogonal sys-
tem {e−i · tk , φ̂k}k∈Z. Here, the measurement functionals are given
by ck(f) = f(tk) =

1
2π

∫ π
−π f̂(ω) e

iωtk dω. Further, the functions

φk(t) = 1
2π

∫ π
−π φ̂k(ω) e

iωt dω serve as reconstruction functions
in the approximation process (1).

For f ∈ PW1
π , even with oversampling, an approximation of

Tf by using the process (1) is not possible in general, because there
are signals f ∈ PW1

π and stable LTI systems T : PW1
π → PW1

π

such that (1) diverges [8]. In [9] more general measurement func-
tionals, which are based on a complete orthonormal system {θ̂n}n∈N
in L2[−π, π], were considered.

Before we treat the PW1
π case, we quickly review the situation

for the space PW2
π . For f ∈ PW2

π the situation is simple. Let
{θ̂n}n∈N be a complete orthonormal system in L2[−π, π]. Then,
the measurement functionals cn : PW2

π → C, n ∈ N, are given by

cn(f) =
1

2π

∫ π

−π
f̂(ω)θ̂n(ω) dω =

∫ ∞
−∞

f(t)θn(t) dt

and the reconstruction functions by

θn(t) =
1

2π

∫ π

−π
θ̂n(ω) e

iωt dω.

Further, we have

lim
N→∞

∫ ∞
−∞

∣∣∣∣∣f(t)−
N∑
n=1

cn(f)θn(t)

∣∣∣∣∣
2

dt = 0

for all f ∈ PW2
π . Since T : PW2

π → PW2
π is a stable LTI system,

it follows that the system approximation process

∞∑
n=1

cn(f) (Tθn)(t), t ∈ R, (5)

converges in the L2-norm, and consequently uniformly on the whole
real axis.

For signals in PW1
π the situation is more difficult. In order that

cn(f) =
1

2π

∫ π

−π
f̂(ω)θ̂n(ω) dω (6)

is also a reasonable measurement procedure for f ∈ PW1
π , we

need the functionals cn : PW1
π → C, defined by (6), to be contin-

uous and uniformly bounded in n. Since sup‖f‖PW1
π
≤1|cn(f)| =

‖θ̂n‖L∞[−π,π], this means we additionally have to require that the
functions of the complete orthonormal system {θ̂n}n∈N satisfy

sup
n∈N
‖θ̂n‖L∞[−π,π] <∞. (7)

In [9] it was proved that for every 0 < σ < π there exist a
complete orthonormal system {θ̂n}n∈N in L2[−π, π] satisfying (7)
and an associated sequence of measurement functionals {cn}n∈N as
defined by (6), such that, for all stable LTI systems T : PW1

π →
PW1

π and all signals f ∈ PW1
σ , the system approximation process

(5) converges uniformly to Tf .
Thus, using oversampling and more general measurement func-

tionals, it is possible to have a stable system approximation with the
process (5). Note that the system approximation process in this re-
sult has the bandwidth π, because the functions θn are in PW2

π , but
the input signal f has bandwidth σ < π, because f ∈ PW1

σ . Thus,
the approximation process requires a larger bandwidth than the input
signal. In the next section we will present a two-channel approach
that does not require this increased bandwidth.

5. REDUCED BANDWIDTH APPROXIMATION

We first study the behavior of the two-channel system approximation
process, which is depicted in Figure 1, for signals in PW2

π . The
analysis for PW2

π is simple, but will provide some useful insights
for the PW1

π case.
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P+

P−

∑
d+n (f)Tθ

+
n

∑
d−n (f)Tθ−n

f

c+n

c−n

Tf

{d+n (f)}

{d−n (f)}

•

d+n

d−n

measurement
functionals

approximation
process

Fig. 1. Two-channel approach for system approximation with mea-
surement functionals.

Let P+ and P− be the stable LTI systems defined by the transfer
functions ĥP+(ω) = 1[0,π](ω) and ĥP−(ω) = 1[−π,0](ω). Clearly,

(P+f)(t) =

∫ π

−π
f̂(ω)1[0,π](ω) e

iωt dω =

∫ π

0

f̂(ω) eiωt dω

and

(P−f)(t) =

∫ π

−π
f̂(ω)1[−π,0](ω) e

iωt dω =

∫ 0

−π
f̂(ω) eiωt dω

are the projections of f onto the positive and negative frequencies.
Further, let {θ̂+n }n∈N and {θ̂−n }n∈N be two complete orthonor-
mal systems in L2[−π, π]. We will apply {θ̂+n }n∈N to P̂+f and
{θ̂−n }n∈N to P̂−f . The coefficient functionals associated with the
bases {θ̂+n }n∈N and {θ̂−n }n∈N are given by

c+n (f) =
1

2π

∫ π

−π
f̂(ω)θ̂+n (ω) dω

and

c−n (f) =
1

2π

∫ π

−π
f̂(ω)θ̂−n (ω) dω.

Based on the projection operators and the coefficient functionals, we
define the measurement functionals as

d+n (f) := c+n (P
+f) =

1

2π

∫ π

−π
(̂P+f)(ω)θ̂+n (ω) dω

=
1

2π

∫ π

0

f̂(ω)θ̂+n (ω) dω (8)

and

d−n (f) := c−n (P
−f) =

1

2π

∫ π

−π
(̂P−f)(ω)θ̂−n (ω) dω

=
1

2π

∫ 0

−π
f̂(ω)θ̂−n (ω) dω. (9)

For signals f ∈ PW2
π it is easy to show, using the fact that {θ̂+n }n∈N

and {θ̂−n }n∈N are bases for L2[−π, π], that the approximation pro-
cess

∞∑
n=1

d+n (f)(Tθ
+
n )(t) + d−n (f)(Tθ

−
n )(t)

converges in the L2-norm, and consequently uniformly on the real
axis, to Tf .

Remark 2. Note that both {θ̂+n }n∈N and {θ̂−n }n∈N are bases for
L2[−π, π], whereas P̂+f and P̂−f are supported on [0, π] and
[−π, 0], respectively. This fact will be important for the proof of
Theorem 1 below. Although for the illustrating PW2

π example here
every complete orthonormal system will work, we need to use a
special complete orthonormal system with specific properties later
in the proof of the PW1

π result.
Remark 3. Note that the measurement functionals d+ and d− can-
not be implemented as a time-invariant system with subsequent sam-
pling. This is a difference to classical multichannel sampling, where
the signal is filtered by LTI systems and sampled subsequently.

The next theorem shows that the two-channel approach with
sampling functionals, as depicted in Figure 1, provides a stable sys-
tem approximation process with bandwidth equal to the input signal
bandwidth that converges uniformly to Tf for all stable LTI systems
T and all signals f ∈ PW1

π .

Theorem 1. There exist two complete orthonormal systems {θ̂+n }n∈N
and {θ̂−n }n∈N in L2[−π, π] satisfying (7), two associated sequences
of measurement functionals {d+n }n∈N and {d−n }n∈N as defined by
(8) and (9), and a constant C1 such that for all stable LTI systems
T : PW1

π → PW1
π and all f ∈ PW1

π we have

lim
N→∞

∥∥∥∥∥Tf −
N∑
n=1

d+n (f)Tθ
+
n + d−n (f)Tθ

−
n

∥∥∥∥∥
∞

= 0.

Theorem 1 is not only an abstract existence result. The com-
plete orthonormal systems {θ̂+n }n∈N and {θ̂−n }n∈N, which are used
in Theorem 1, can be explicitly constructed by a procedure given
in [16, 17].
Remark 4. It is necessary to use two different orthonormal systems.
If we had only one single orthonormal system, we would have the
situation that was analyzed in [9], for which divergence has been
proved.

For the proof we need the following theorem from [16, 17].

Theorem 2 (Olevskii). Let 0 < δ < 1. There exists an orthonormal
system {ψn}n∈N of real-valued functions that is closed in C[0, 1]
such that supn∈N‖ψn‖L∞[0,1] < ∞ and such that there exists a
constant C2 such that for all x ∈ [δ, 1] and all N ∈ N we have∫ 1

0

∣∣∣∣∣
N∑
n=1

ψn(x)ψn(τ)

∣∣∣∣∣ dτ ≤ C2.

Remark 5. In the above theorem, we adopted the notion of “closed”
from [18]. In [18] a system {ψn}n∈N is called closed in C[0, 1] if
every function in C[0, 1] can be uniformly approximated by finite
linear combinations of the system {ψn}n∈N, that is if for every ε >
0 and every f ∈ C[0, 1] there exists an N ∈ N and a sequence
{αn}Nn=1 ⊂ C such that ‖f −

∑N
n=1 αnψn‖L∞[0,1] < ε.

Proof of Theorem 1. Using the functions ψn from Theorem 2 we
define θ̂+n (ω) = ψn

(
π+ω
2π

)
and θ̂−n (ω) = ψn

(
π−ω
2π

)
, ω ∈ [−π, π].

Due to the properties of ψn, it follows that {θ̂+n }n∈N and {θ̂−n }n∈N
are two complete orthonormal systems for L2[−π, π] and that
supn∈N‖θ̂+n ‖L∞[−π,π] = supn∈N‖θ̂−n ‖L∞[−π,π] < ∞. Moreover,
for ω ∈ [0, π], we have

1

2π

∫ π

−π

∣∣∣∣∣
N∑
n=1

θ̂+n (ω)θ̂
+
n (ω1)

∣∣∣∣∣dω1=

∫ 1

0

∣∣∣∣∣
N∑
n=1

ψn
(π + ω

2π

)
ψn(τ)

∣∣∣∣∣dτ
≤ C2, (10)
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according to Theorem 2, because for ω ∈ [0, π] we have (π +
ω)/(2π) ∈ [1/2, 1], and for ω ∈ [−π, 0], we have

1

2π

∫ π

−π

∣∣∣∣∣
N∑
n=1

θ̂−n (ω)θ̂
−
n (ω1)

∣∣∣∣∣dω1 ≤ C2, (11)

according to the same consideration, because for ω ∈ [−π, 0] we
have (π − ω)/(2π) ∈ [1/2, 1]. Next, for f ∈ PW1

π , we study the
expression

(UN f̂)(ω) :=

N∑
n=1

d+n (f)θ̂
+
n (ω) +

N∑
n=1

d−n (f)θ̂
−
n (ω)

=
1

2π

∫ π

0

f̂(ω1)

N∑
n=1

θ̂+n (ω)θ̂
+
n (ω1) dω1

+
1

2π

∫ 0

−π
f̂(ω1)

N∑
n=1

θ̂−n (ω)θ̂
−
n (ω1) dω1.

Applying Fubini’s theorem, (10), and (11), it follows that

1

2π

∫ π

−π
|(UN f̂)(ω)| dω

≤ 1

2π

∫ π

0

|f̂(ω1)|

(
1

2π

∫ π

−π

∣∣∣∣∣
N∑
n=1

θ̂+n (ω)θ̂
+
n (ω1)

∣∣∣∣∣ dω
)

dω1

+
1

2π

∫ 0

−π
|f̂(ω1)|

(
1

2π

∫ π

−π

∣∣∣∣∣
N∑
n=1

θ̂−n (ω)θ̂
−
n (ω1)

∣∣∣∣∣ dω
)

dω1

≤ C2‖f‖PW1
π

(12)

Let f ∈ PW1
π and ε > 0 be arbitrary but fixed. There exists an

fε ∈ PW2
π such that ‖f − fε‖PW1

π
< ε. We have

1

2π

∫ π

−π
|f̂(ω)− (UN f̂)(ω)| dω

≤ 1

2π

∫ π

−π
|f̂(ω)−f̂ε(ω)|dω +

1

2π

∫ π

−π
|f̂ε(ω)−(UN f̂ε)(ω)|dω

+
1

2π

∫ π

−π
|(UN (f̂ − f̂ε))(ω)| dω

≤ ε+ C2ε+

(
1

2π

∫ π

−π
|f̂ε(ω)− (UN f̂ε)(ω)|2 dω

) 1
2

, (13)

where we used (12) and the Cauchy–Schwarz inequality in the last
step. Let f̂+

ε = 1[0,π]f̂ε and f̂−ε = 1[−π,0]f̂ε. Since f̂+
ε and f̂−ε

are in L2[−π, π], and since {θ̂+n }n∈N and {θ̂−n }n∈N are complete
orthonormal systems in L2[−π, π], there exists a natural number
N0 = N0(ε) such that

1

2π

∫ π

−π
|f̂+
ε (ω)− (UN f̂

+
ε )(ω)|2 dω

=
1

2π

∫ π

−π

∣∣∣∣∣f̂+
ε (ω)−

N∑
n=1

(
1

2π

∫ π

−π
f̂+
ε (ω1)θ̂

+
n (ω1)dω1

)
θ̂+n (ω)

∣∣∣∣∣
2

dω

< ε2

and, by the same considerations,

1

2π

∫ π

−π
|f̂−ε (ω)− (UN f̂

−
ε )(ω)|2 dω < ε2

for all N ≥ N0. It follows that(
1

2π

∫ π

−π
|f̂ε(ω)− (UN f̂ε)(ω)|2 dω

) 1
2

≤
(

1

2π

∫ π

−π
|f̂+
ε (ω)− (UN f̂

+
ε )(ω)|2 dω

) 1
2

+

(
1

2π

∫ π

−π
|f̂−ε (ω)− (UN f̂

−
ε )(ω)|2 dω

) 1
2

≤ 2ε. (14)

Hence, we see from (13), (14) that 1
2π

∫ π
−π|f̂(ω)−(UN f̂)(ω)| dω ≤

(3 + C2)ε for all N ≥ N0. Since ε > 0 was arbitrary, this shows
that

lim
N→∞

1

2π

∫ π

−π
|f̂(ω)− (UN f̂)(ω)| dω = 0. (15)

For arbitrary stable LTI systems T : PW1
π → PW1

π we have

(Tf)(t)−
N∑
n=1

d+n (f)(Tθ
+
n )(t) + d−n (f)(Tθ

−
n )(t)

=
1

2π

∫ π

−π

(
f̂(ω)ĥT (ω) e

iωt

−
N∑
n=1

d+n (f)ĥT (ω)θ̂
+
n (ω) e

iωt+d−n (f)ĥT (ω)θ̂
−
n (ω) e

iωt

)
dω

=
1

2π

∫ π

−π
(f̂(ω)− (UN f̂)(ω))ĥT (ω) e

iωt dω

and consequently∣∣∣∣∣(Tf)(t)−
N∑
n=1

d+n (f)(Tθ
+
n )(t)− d−n (f)(Tθ−n )(t)

∣∣∣∣∣
≤ ‖ĥT ‖L∞[−π,π]

1

2π

∫ π

−π
|f̂(ω)− (UN f̂)(ω)| dω (16)

for all t ∈ R. Combining (16) and (15) yields the assertion.

6. RELATION TO PRIOR WORK

The approximation of LTI systems by sampling series is a well-
studied field [7,19–23]. The instability of the approximation process,
which was observed in [8] for signals in PW1

π , can be overcome
by using more general measurement functionals, as it was recently
shown [9]. The result in [9] can be interpreted as a one channel
approach, where we only have one sequence of measurement func-
tionals, consisting of the identity operator P = Id as pre-filter and a
single orthonormal basis. Using this approach, oversampling is nec-
essary to obtain a stable approximation, without oversampling we do
not have convergence in general.

General measurement functionals have been analyzed be-
fore [11–15], but only for the signal reconstruction problem and
not for the system approximation problem. In [24] a filter bank
approach has been presented for sampling in atomic spaces, and
in [25] sparsity has been considered for these spaces.

In this paper we show that, using a two channel approach and
suitably chosen measurement functionals, it is possible to reduce the
bandwidth of the approximation process to the bandwidth of the in-
put signal. The proposed approach improves the result in [9] and ex-
tends the usual multichannel sampling setting [5,20,26–29] to incor-
porate the measurement functional idea. Interestingly, the transition
from a one channel to a two channel approach is already sufficient
for a stable implementation with minimum bandwidth.
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