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ABSTRACT
Dictionary learning algorithms have received widespread ac-
ceptance when it comes to data analysis and signal represen-
tations problems. These algorithms alternate between two
stages: the sparse coding stage and dictionary update stage.
In all existing dictionary learning algorithms the use of spar-
sity has been limited to the sparse coding stage while pre-
senting differences in the dictionary update stage which can
be achieved sequentially or in parallel. The singular value
decomposition (SVD) has been successfully used for sequen-
tial dictionary update. In this paper we propose a dictionary
learning algorithm that include a sparsity constraint also in
the dictionary update stage. The cost function used to include
sparsity in the dictionary update stage is derived using the link
between SVD and rank one matrix approximation. The effec-
tiveness of the proposed dictionary learning method is tested
on synthetic data and an image processing application. The
results reveal that including a sparsity constraint in the dictio-
nary update stage is not a bad idea.

Index Terms— Dictionary learning, sparsity, SVD, se-
quential update, penalized rank one approximation.

1. INTRODUCTION

Dictionary learning methods have been successfully used in
a number of signal and image processing applications among
them image denoising [1][2], face recognition [3], compres-
sion [4] and fMRI data analysis [5][6][7]. These methods
seek to uncover a linear multivariable latent structure in the
observed data by imposing the reasonable constraint that the
estimates of the observed variables are sparse linear func-
tions of some unknown regressors (atoms of the dictionary).
The other particularity of these methods is that this set of
regressors or the dictionary is also tuned iteratively to find the
optimal linear multivariable latent model.
Dictionary learning algorithms consist of two stages: a sparse
coding stage and a dictionary update stage. In the first stage
the dictionary is kept constant and the sparsity assumption
is used to produce sparse linear approximations of the ob-
served data. In the second stage, the coefficients of the linear
combination are kept constant and the dictionary is updated

to minimize a certain cost function. The dictionary learning
methods iterate between these two stages until convergence.
The performance of these methods strongly depend on the
dictionary update stage since most of these methods share a
similar sparse coding stage. Dictionary learning through the
dictionary update stage can also be made sequential or paral-
lel. For a specific strategy or goal (characterized by the cost
function used to update the dictionary), the parallel approach
will generally require a lower computational cost than the
sequential approach that uses the same strategy. While the
parallel update approach may be preferred for its advantage in
computational complexity, the sequential approach generally
offers better results because it generates finer tuned dictionary
atoms.
Probabilistic and non-probabilistic approaches have been
adopted for the derivation of dictionary learning algorithms.
Most of the proposed algorithms have kept the two stages
optimization procedure, the difference appearing mainly in
the dictionary update stage. The maximum likelihood and
a posteriori approaches have been used in [8][9][10][11] to
derive an estimate of the dictionary in parallel. The square of
the Frobenius norm was used in [1] to derive a sequential dic-
tionary update stage. Other examples of sequential dictionary
learning algorithms can be found in [12][13].
The sparsity constraint used in the sparse coding stage is the
pillar of any dictionary learning algorithm. While this con-
straint is always used in the sparse coding stage, it has not
been used in the dictionary update stage. Since there is no
reason for not using a sparsity constraint also in the dictio-
nary update stage, in this paper we revisit one of the most
popular dictionary learning method [14], where we include
the sparsity constraint also in the dictionary update stage.
As revealed by the results obtained on different experiments,
including the sparsity constraint also in the second stage of
the algorithm appears to be a good idea. The contributions in
this paper are therefore two: first we propose a new approach
for dictionary learning where sparsity is also enforced in the
dictionary update stage and second using the penalized ma-
trix decomposition framework [15], we proposed an efficient
approach for including the sparsity constraint in sequential
dictionary learning.

3876978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



2. BACKGROUND

Let Y = [y1, y2, ..., yN ] where yi ∈ Rn be the set of signal
to be represented. Given a dictionary D ∈ Rn×K containing
a set of K regressors (dictionary atoms) dk ∈ Rn, dictionary
learning algorithms generate a representation of signal y as a
sparse linear combination of the atoms dk for k = 1, ...,K,
K << N

ŷi = Dxi
where xi ∈ RK represent the corresponding signal strength.
This signal is a sparse representation vector such that ||xi||0 =
s << K (∥ · ∥0 is the l0 norm). Dictionary learning algo-
rithms distinguish themselves from traditional model-based
method by the fact that, in addition to xi, they also train the
dictionary D to better fit the data set Y. Given Y, D is trained
to minimize the error ||Y − DX||2F where X are the sparse
representations determined in the sparse coding stage. Dic-
tionary learning algorithms generate a solution by iteratively
alternating between the sparse coding stage

x̂i = argmin
xi

∥ yi − Dxi ∥2; subject to ∥ xi ∥0≤ s (1)

for i = 1, ..., N and the dictionary update stage for the ob-
tained X from the sparse coding stage

D = argmin
D

∥ Y − DX ∥2F . (2)

Dictionary learning algorithms are often sensitive to the
choice of s. Finding the optimal s corresponds to a prob-
lem of model order selection that can be resolved using a
univariate linear model selection criterion [16, 17, 18, 19].
The update step can either be sequential as in [14] or in paral-
lel as in [11]. In sequential dictionary learning, the dictionary
update minimization problem (2) is split into K sequential
minimizations, optimizing the cost function (2) for each atom
individually while keeping the remaining atoms fixed. In the
method proposed in [14], which has become a benchmark in
dictionary learning, each column dk of D and its correspond-
ing row of coefficients xk are updated based on a rank-1
matrix approximation of the error for all the signals when dk

is removed

{dk, xk} = arg min
dk,xrowk

∥Ek − dkxrowk ∥2F . (3)

where Ek = Y −
∑K

i=1,i̸=k dixrowi The singular value de-
composition (SVD) of Ek = U∆V⊤ is used to find the clos-
est rank-1 matrix approximation of Ek [20]. The dk update
is taken as the first column of U and the xrowk update is taken
as the first column of V multiplied by the first element of ∆,
xrowk = λx̃rowk . The motivation of the proposed approach
comes from the observation that the rank-1 approximation
obtained using the SVD and written as dkxrow

k can also be
obtained by alternating minimization [20] of

∥Ek − dkxrowk ∥2F = tr
{
(Ek − dkxrowk )(Ek − dkxrowk )⊤

}

= ∥Ek∥2F − 2d⊤
k Ekxrow

⊤

k + ∥dk∥2.∥xrowk ∥2. (4)

subject to ∥dk∥2 = 1, which gives

dk =
Ekxrow

⊤

k

∥ Ekxrow⊤
k ∥2

and xrowk = d⊤
k Ek. (5)

These equations can be used to justify the power algorithm,
which, if initialized randomly, converges almost surely to a
least square rank one fit. Using this observation a dictionary
update can be obtained by iterating (5) until convergence or
by applying only one iteration of the equations instead of the
computationally expensive SVD.

3. MOTIVATION

The direct application of the SVD to Ek as described above
to generate an update of dk and xrowk inevitably led to the loss
of sparsity in xrowk since the update vector may contain all
nonzero entries. To remedy to this loss of sparsity problem,
the algorithm proposed in [14] restricts the optimization of
(3) only to the signals yi that use the atom dk. Defining the
index set wk = {i|1 ≤ i ≤ N ; xrowk (i) ̸= 0}, the SVD is
applied on the matrix formed by the columns of Ek indexed
by the elements of wk. Denoting by Iwk

the N × |wk| sub-
matrix of the N × N identity matrix obtained by retaining
only those columns whose index numbers are in wk, we see
that the restricted matrix ER

k = EkIwk
. Taking the SVD of

ER
k = U∆V⊤ rather than that of Ek for dictionary update will

only modify the the nonzero entries of xrowk .
As indicated in [14] not remembering the sparsity in the dic-
tionary update stage may lead to a lower performance dictio-
nary learning method. An alternative to this sparsity remem-
bering approach is: rather than only updating the nonzero en-
tries of xrow

k in the dictionary update stage we also propose
to re-update the sparsity of xrowk . The resulting problem is a
regularized rank one matrix approximation where the penalty
is introduced in the minimization problem to promote sparsity
of xrowk . Form the connection of principal component analysis
(PCA) with SVD this can also be seen as a problem of sparse
PCA [21][22] where the ℓ1 penalty was used to promote spar-
sity of the loading vectors and improve the interpretability of
PCA.

4. PROPOSED DICTIONARY UPDATE STAGE WITH
ENFORCED SPARSITY

Given the above description, we seek an optimization frame-
work to achieve a rank one approximation dkxrowk with a
sparse vector xrowk where xrowk = λx̃rowk , λ being the largest
singular value of Ek. From the numerous proposals for
sparse PCA we adopt the popular penalized regression ap-
proach [22]. With this approach, the updates of dk and xrowk

are obtained by alternating minimization of

{dk, xrow
k } = arg min

dk,xrowk

∥Ek − dkxrowk ∥2F +α∥xrowk ∥1 (6)
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subject to ∥dk∥2 = 1

where α is a non-negative penalty parameter controlling the
amount of sparsity in xrowk (increasing α increases the amount
of sparsity in xrow

k ) and the penalty encouraging sparsity is
taken as the l1−norm [23][24]. The use of xrowk instead of
x̃rowk in the l1 penalty is justified by the fact that xrowk is a unit
vector and thus subject to scale constraint. This in turn will
invalidate its use of the l1 penalty. For fixed dk and ∥dk∥2 =
1, the xrowk that minimizes (6) is given by

xrowk = argmin
xrowk

∥Ek∥2F + ∥xrowk ∥2 + α∥xrowk ∥1

− 2d⊤
k Ekxrow

⊤

k . (7)

Hence the solution is given by

xrowk = sgn(d⊤
k Ek).

(
|d⊤

k Ek| −
α

2
1⊤(N)

)
+

(8)

where 1(N) is a vector of ones of size N . For fixed xrow
k , the

dk that minimizes (6) is derived from

dk = argmin
dk

−2d⊤
k Ekxrow

⊤

k + ∥dk∥2.∥xk∥2 (9)

which with the constraint ∥dk∥2 = 1 gives

dk =
Ekxrow

⊤

k

||Ekxrow⊤
k ||2

. (10)

For a penalty of the form α2 ∥ xrowk ∥0= α2
∑N

i=1 I(x
row
k (i) ̸=

0); a measure that counts the number of nonzero coeffi-
cients; where xrow

k (i) is the ith entry of xrowk , instead of
α∥xrowk ∥1 in (6) the solution of (7) is given by xrowk =

I
(
|d⊤

k Ek| > α1⊤(N)

)
d⊤
k Ek.

The resulting dictionary learning algorithm is depicted in
table 1. Instead of the SVD of ER

k [14], the updates of dk

and xrowk are found by iterating (8) and (10) until conver-
gence. This updating strategy is similar in spirit to using
(5) for computing dk and xrowk . The selection of the penalty
parameter α can be obtained using a model selection criterion
or cross validation. The simplified dictionary update stage
used in this paper is obtained by applying a single iteration
of (8) and (10) rather alternating until convergence. The
computational cost of this iteration is O(nN) compared to
the O(ln2|wk|+ l′|wk|3) computational cost of an SVD [20]
used in [14].

5. EXPERIMENTAL RESULTS

We compared the proposed algorithm with K-SVD [14] and
MOD [11] on two applications: dictionary recovery and fill-
in missing image pixels. In each case we used a normalized
overcomplete dictionary, learned either from the observed
noisy data or trained over some training set.

Table 1. Stepwise description of the proposed sequential dic-
tionary learning algorithm with enforced sparsity

Given: Y ∈ Rn×N , Dini, s, α, J.
Set D = Dini

For i=1 to J
1: Sparse Coding Stage:

Find sparse coefficients X , by approximately solving
x̂i = argminxi ∥ yi − Dxi ∥2;
subject to ∥ xi ∥0≤ s i = 1, ..., N

2: Dictionary Update Stage:
For each column k = 1, 2, ...,K in D,
2.a: Compute the error matrix using
Ek = Y −

∑K
i=1,i̸=k dixrowi

2.b: Update the row xrowk and its sparsity using

xrowk = sgn(d⊤
k Ek).

(
|d⊤

k Ek| − α
2 1⊤(N)

)
+

2.c: Update the dictionary atom dk using

dk =
Ekxrow

⊤
k

||Ekxrow⊤
k ||2

end.
Output: D,X

5.1. Synthetic data

In the first experimental test, similar to the reported works
[14] and [11], the proposed method is evaluated with a syn-
thetically generated signal where the learned dictionary is
compared with the actual dictionary that generates the signal.
This test will demonstrates the dictionary learning accuracy
of each method. A generating dictionary, Dg , of size 20×100
is generated with i.i.d uniformly distributed entries. Each col-
umn (atom) of Dg is normalized to unit ℓ2 norm. A training
set Y of 1500 signals with dimensions 20 is generated. Each
training signal is created by a linear combination of randomly
located s atoms from Dg. Finally an equal white Gaussian
noise is added to each training signal to maintain a uniform
signal to noise ratio (SNR)∈ [15, 20, 30, 40] dB.
In each algorithm the learned dictionary, Dl, is initialized
with a (same) set of training signals. In all cases the sparse
coefficients are estimated using the orthogonal matching pur-
suit (OMP), with s coefficient approximation for each signal.
The experiments are run for different sparsity levels, s = 2, 3,
4 and 5 and for each sparsity level the algorithms are iterated
j = 300 times, where j indicates the iterations number after
which the output is almost stable. For each sparsity level,
we generate signals with SNR levels 15, 20, 30 and 40 dB.
For each sparsity and SNR combination we run 10 trails and
record the mean values.
The learned dictionaries by each algorithm are compared
against the generating dictionary in the similar way as in
[14][11]. The average numbers of restored dictionary atoms
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Fig. 1. Average number of dictionary atoms retrieved at each
iteration.

Table 2. Average number of restored dictionary atoms.

Sparsity (s) Sparsity (s)
3 4 3 4

Method SNR 15 dB SNR 30 dB
K-SVD 67.40 50.62 80.13 65.02
MOD 61.64 47.27 78.62 62.32
Proposed 78.68 73.15 90.48 87.53

for SNR 15 and 30 dB are compared in table 2, which con-
clude the performance edge of the proposed method over K-
SVD and MOD algorithms. In figure 1 we plot the number of
dictionary atoms retrieved at each iteration of the algorithms
for s = 4 and 40 dB SNR. These results shows comparatively
improved performance of our proposed method.

5.2. Fill-in missing image pixels

In our second experiment the learned dictionaries are tested
for the estimation of missing image data, i-e filling the miss-
ing pixels in an image. A training data set Y is constructed
by randomly selecting 2000 patches of size 8 × 8 from a set
of training images1. We applied K-SVD, MOD, and the pro-
posed method to learn dictionaries of size 64 × 100 from Y ,
with the same sparsity level and number of iterations, j = 10.
We than select an input image from the set of training images.
The image is divided into N non-overlapping patches of size
8 × 8, to form the image matrix I ∈ R64×N . In each im-
age patch, Ii, a fraction of m random pixels are deleted, set
to zero, where m ∈ [0.2, 0.7]. For each image patch with
missing pixels, the sparse coefficients are estimated under the
learned dictionaries using OMP. The estimated sparse coeffi-

1The training set consists of the well known Lena, Barbara, Cameraman,
Peppers and Boat images of size 256× 256.

Table 3. Fill-in missing pixels comparison in terms of SSD.
Method m

0.3 0.5
K-SVD 16.21 22.01
MOD 16.80 22.53
Proposed 15.05 20.60

Fig. 2. Missing Pixel: Visual comparison.

cients vector of each patch is denoted by xi, where i indicates
the number of patch. The reconstructed patch is then obtained
as, Îi = D · xi where D is the learned dictionary.
In table 3 we present the result comparisons in terms of sum of
squared difference (SSD), calculated from the reconstructed
image and the original Lena image for m = 0.3 and 0.5.
As can be seen, the proposed method produce better quality
estimation compared to K-SVD and MOD methods. More-
over, the computational cost of the proposed method is less
expensive than K-SVD which uses K−times SVD to sequen-
tially update the dictionary. A visual comparison for m = 0.6
is presented in figure 2, where a corrupted image is recon-
structed using the learned dictionaries.

6. CONCLUSION

While the sparsity constraint constitutes a primary ingredient
of any dictionary learning method, it has only been included
in the sparse coding stage. In this paper a new sequential dic-
tionary learning algorithm has been proposed by efficiently
including the sparsity constraint also in the dictionary update
stage. Compared to state of the art methods, the proposed al-
gorithm is computationally more efficient and generates better
results.
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