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ABSTRACT

Optimal error feedback filters for A/D converters of remote
sensors in networked control systems are studied. It is shown
that if the transfer function from the quantization error to the
output of interest has a minimum phase, then its inverse is the
optimal error feedback filter in terms of any kind of norms
of errors. For general LTI systems, the design of error feed-
back filters is formulated as an optimization problem, which
can be numerically solved. A design example is provided to
demonstrate the effectiveness of our proposed method.

Index Terms— quantization, uniform quantizer, network
control system, error feedback filter

1. INTRODUCTION

The networked control system is a system composed of multi-
ple (sub-)systems that are connected via wirelne and wireless
communications to exchange information (e.g., see [1] and
the references therein). In a networked control system, con-
trol signals from the controller are transmitted to the plant to
be operated. Signals observed by sensors for the plant are
transmitted to the controller, from which the control signals
are generated.

If one adopts a digital communication for the transmis-
sion, then continuous-valued signals have to be discretized
and quantized. If the systems are connected through a wire-
line and have sufficient resources, then one may avoid the ef-
fects of quantization, since one can increase the transmission
rate easily and hence use a sufficient number of bits to repre-
sent the continuous-valued signals. However, if not, one may
have to consider the effects of quantization, since wireless
communications are not that robust.

Quantization is an old yet important topic, which has
been studied well since the advent of digital processors.
Quantization is the mapping from the continuous-valued sig-
nal to the discrete-valued signal. If the distribution of the
continuous-valued signal is known, then the vector quantiza-
tion [2, Sec.3.4] is effective, which determines the discrete-
valued signal based on the distribution of the continuous-
valued signal. When the knowledge on the system and the
signals are not available, uniformly distributed values are

assigned to the discrete-valued signal. Since the error affects
the performance of the system, the error has been analyzed
by many researchers (see [3] and the references therein).

The quantization error signal is often modeled as white
noise. Under the white noise assumption, there have been
many proposals to decrease the effects of quantization errors.
In [4], the optimal realization of the digital filter that min-
imizes the output noise variance due to the roundoff is de-
veloped. Error spectrum shaping, which is also called error
feedback, is a technique to reduce the effects of quantization
errors by feeding back filtered errors to the quantizer [5, 6].
The optimal FIR error feedback filters are designed in [7].
Most of them are FIR filters, since it is difficult to assure the
stability of designed filters.

Without the white noise assumption, based on the l∞
norm, the optimal error feedback filter for A/D converters
of the controller is presented for systems having minimum
phases in [8]. To obtain optimal error feedback filters at the
controller, a numerical design using linear programming is
proposed in [9]. To guarantee the stability of error feedback
filters, [10] makes a good use of the invariant set theory
for discrete-time LTI systems [11] and provides a numeri-
cal design of error feedback filters based on linear matrix
inequalities (LMIs).

This paper studies the optimal IIR error feedback filters
for A/D converters of remote sensors, where each sensor
transmits its observed signals to the controller but works in-
dependently, i.e, it does not utilize the signals from other
sensors. First, we show that if the transfer function from the
quantization error to the interested output has a minimum
phase, then its inverse is the optimal error feedback filter in
terms of any kind of norms of the errors. Then, for general
LTI systems, we formulate our design of error feedback fil-
ters as an optimization problem. For a fixed scalar parameter
variable, the optimization problem is converted into a con-
vex optimization problem, which can be efficiently solved by
existing convex optimization solvers. Then, the optimization
is achieved by finding the optimal scalar variable. A design
example is provided to demonstrate the effectiveness of error
feedback filters designed by our proposed method.

3866978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



- Controller - Plant

?

Sensor

6

Fig. 1. A network control system.

2. NETWORKED SYSTEMS AND QUANTIZATION

Let us consider a networked control system depicted in Fig.
1. In this paper, we only deal with SISO plants.

We consider discretized systems. Let the plant be an LTI
linear system that is controllable and observable. We denote
the output of the mth sensor as ym,k. Since the control input
uk is generated based on the observed signals in a feedback
system, one may express uk as uk =

∑M
m=1 Km[z]ym,k,

where Km[z] is the feedback system.
The output of each sensor is quantized by a quantizer that

maps a continuous value to a discrete value. Simple static
uniform quantizers are often utilized. For the continuous-
valued input x, let the output of the static uniform quantizer
be q(x) = ⌊x

d + 1
2⌋d, where d is the quantization interval and

⌊a⌋ denotes the largest integer not exceeding a.
We evaluate the effect of quantization, expressing the

quantized signal of ym,k as vm,k. If one denotes the quantiza-
tion error of the mth quantizer as em,k, then one can express
vm,k = ym,k + em,k.

Let zk be the output of the system without quantization
and zQ,k be the output of the plant with quantization. Their
difference

ϵk = zQ,k − zk (1)

can be used to evaluate the effect of the quantization.
We express the transfer function from the quantization er-

ror of the mth quantizer to the output zk as Hm[z]. Since the
plant is linear, the effect on the output of the error em,k is
given by

ϵm,k = Hm[z]em,k. (2)

Then, we have ϵk =
∑M

m=1 ϵm,k. When sensors can not com-
municate with each other, it is reasonable to independently
minimize ϵm,k for each m to mitigate the effect of the quan-
tization.

To measure the error signal, we use the lp norm defined
for a finite p as

||xk||p =

[ ∞∑
k=0

|xk|p
] 1

p

(3)

and for p = ∞ as

||xk||∞ = sup
k

|xk|. (4)
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Fig. 2. Quantizer with an error feedback filter

3. QUANTIZATION WITH AN ERROR FEEDBACK
FILTER

To mitigate the effect of the quantization by a static uniform
quantizer, we utilize quantizer having an error feedback filter,
which is originally developed to reduce quantization errors in
digital filters and is also called error spectrum shaping [5–7].

Fig. 2 depicts a schematic diagram of our quantizer. Our
quantizer is composed of the static uniform quantizer qm(·)
and an error feedback filter Qm[z] − 1, where Qm[z] is the
transfer function with Qm[∞] = 1.

The difference signal wm,k between the input and the out-
put of the static quantizer is filtered by a filter Qm[z] − 1
and then is fed back to ym,k. It should be remarked that if
Qm[z] ̸= 1, then wm,k is not equal to the quantization error
vm,k − ym,k. One can show that

ϵm,k = Hm[z]Qm[z]wm,k. (5)

Suppose that Hm[z] can be expressed with a product of
delay z−Dm and a proper function H̃m[z] =

∑∞
k=0 h̃m,kz

−k

having h̃m,k ̸= 0 as Hm[z] = z−DmH̃m[z]. The induced
norm of the system H[z] =

∑∞
k=0 hkz

−k by the lp norm is
defined

||H[z]||ip = sup
{xk}̸=0

||H[z]xk||p
||xk||p

(6)

where ||H[z]xk||p is the lp norm of the output of the system.
From the property of norms, we have

||ϵm,k||p ≤ ||Hm[z]Qm[z]||ip||wm,k||p (7)

≤ |h̃m,0|||wm,k||p
+||Hm[z]Qm[z]− h̃m,0z

−Dm ||ip||wm,k||p.

The last term vanishes if Hm[z]Qm[z] − h̃m,0z
−Dm =

0, i.e., Qm[z] = h̃m,0z
−DmH−1

m [z] = h̃m,0H̃
−1
m [z]. If

Hm[z]Qm[z] = h̃m,0z
−Dm , then ||ϵm,k||p = |h̃m,0|||wm,k||p.

Thus, the equality holds true for (7). This shows that the
norm of the error is minimized if and only if Hm[z]Qm[z] =
h̃m,0z

−Dm .
The optimal quantizer for minimum-phase systems in

terms of the l∞ norm has been provided in [8] based on state-
space expressions. We have proven that the inverse of the
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minimum-phase system is the optimal error feedback filter in
terms of any kind of norm, using not state-space expressions
but transfer functions.

Since H̃m[z] is not guaranteed to have minimum-phase
in practice, we will consider the design of a stable feedback
filter which minimizes ||ϵm,k||∞. We omit the subscript m
since filters can be designed separately.

4. DESIGN OF ERROR FEEDBACK FILTERS FOR
QUANTIZATION

Our objective is to design a stable error feedback filter that
minimizes the effect of the quantization. Mathematically, we
can formulate our design problem as

min
Q[z]∈RH∞

||ϵk||∞ (8)

subject to Q[0] = 1.
The signal wk which is the difference between the input

and the output of the mth static uniform quantizer satisfies
|wk| ≤ d

2 , which means ||wk||∞ ≤ d
2 . Since the transfer

function from wk to ϵk is linear, we can put d = 2 without
loss of generality so that |wk| ≤ 1 and hence |wk|2 ≤ 1.

The composite system H[z]Q[z] has to be internally sta-
ble. Let us denote the (A,B,C,D) matrices of a state-space
realization of H[z] as (Ah, Bh, Ch, 0). Let the order of Q[z]
be n and let (Aq, Bq, Cq, 1) be (A,B,C,D) matrices of a
state-space realization of Q[z]. Then, one can express the
state-space realization of H[z]Q[z] as

xk+1 = Axk + Bwk (9)
ϵk = Cxk (10)

where

A =

[
Ah BhCq

0 Aq

]
, B =

[
Bh

Bq

]
, C =

[
Ch 0

]
We borrow the idea of [10] to design our quantizer, which

utilizes the invariant set of a discrete-time system [11]:

Definition 1 Let xk ∈ Rn be the state vector of the LTI sys-
tem given by

xk+1 = Axk +Bwk (11)

where A ∈ Rn×n, B ∈ Rn×m and wk ∈ Rm. A set X that
satisfies xk+1 ∈ X if xk ∈ X and ||wk||2 ≤ 1 is called an
invariant set of the system (11).

The following proposition describes how to obtain an el-
lipsoid which is an invariant set of the system (11) [11]:

Proposition 1 Let E(P) be the ellipsoid defined by an n× n
real symmetric matrix P ≽ 0 as E(P) = {x ∈ Rn : xTPx ≤
1}.

The ellipsoid E(P) is an invariant set of the system (11)
if and only if there exists a scalar α ∈ [0, 1 − ρ2(A)] which
satisfies[

ATPA− (1− α)P ATPB
BTPA BTPB − αI

]
≽ 0 (12)

where ρ(A) is the spectral radius of A.

For P ≽ 0, using the Schur complement, we can express
(12) as  (1− α)P 0 ATP

0 α BTP
PA PB P

 ≽ 0. (13)

For P that satisfies (13), we have supxk∈E(P) |ϵk| =

|CP−1CT | 12 . Since xk ∈ E(P) is satisfied if (Aq, Bq, Cq)
and P meet (13) for given (Ah, Bh, Ch) and for a fixed
α, we can obtain the optimal (Aq, Bq, Cq) by solving the
minimization problem:

min
(Aq,Bq,Cq),P

|CP−1CT | 12 (14)

subject to (13). It should be remarked that the resultant quan-
tizer is stable, since A has to be a Schur matrix to satisfy (13).

Introducing a variable γ, we can describe our problem as

min
(Aq,Bq,Cq),P,γ

γ (15)

subject to CP−1CT ≤ γ and (13). Using the Schur comple-
ment, we can express CP−1CT ≤ γ as an LMI given by[

P CT

C γ

]
≽ 0. (16)

Eq. (16) is convex in the optimization variables, while Eq.
(13) is a bilinear matrix inequality (BMI) of the variables. In
general, BMIs are not convex and NP-hard to solve numeri-
cally. Fortunately, we can covert the BMI (13) to an LMI by
using the change of variables proposed in [13].

Let the order of Q[z] be equivalent to the system, which is
denoted by n. Let us define matrices {MA,MB ,MC ,MP}
as

MA =

[
AhPf +BhWf Ah

L PgAh

]
, MB =

[
Bh

Wg

]
MC =

[
ChPf 0

]
, MP =

[
Pf In
In Pg

]
where Pf and Pg are n × n positive definite matrices, Wf ∈
R1×n, Wg ∈ Rn×1, and L ∈ Rn×n.

Theorem 1 [13] proves that (13) for the original variables
{A,B, C} is equivalent to the matrix inequality for the new
variables given by (1− α)MP 0 MT

A

0 α MT
B

MA MB MP

 ≽ 0, (17)
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Fig. 3. A rotary inverted pendulum.

which is an LMI.
Moreover, (16) can be expressed by the new variables as[

MP MT
C

MC γ

]
≽ 0. (18)

Then, the minimization problem

min
Pf ,Pg,Ph,Wf ,Wg,L,γ

γ (19)

subject to (17) and (18), gives the minimum of the origi-
nal minimization problem for a given α. Once the optimal
Pf , Pg, Ph,Wf ,Wg, L are given, from Lemma 2 in [13], the
optimal (Ah, Bh, Ch) can be obtained by

Aq = [BpWf − P−1
g (L− PgApPf )](Pf − P−1

g )−1, (20)

Bq = Bh − P−1
g Wg, Cq = Wf (Pf − P−1

g )−1. (21)

For a fixed α, the minimization problem is a semidefinite
program, which can be numerically solved by existing opti-
mization packages, e.g., CVX [14]. Then, all we have to do
is to find α which gives the minimum. Since A is our design
parameter, a line search for α ∈ (0, 1) is required to obtain
the minimum.

5. NUMERICAL EXAMPLE

For our plant, let us consider the rotary inverted pendulum
depicted in Fig. 3. A motor rotates the main body in the hori-
zontal plane to control the pendulum connected at the end of
the rotary arm. The torque u(t) is applied to actuate the pen-
dulum. Let the yaw angle of the arm be ϕ(t). The pendulum
freely swings about a pitch angle θ(t) in the vertical plane to
the arm. If θ(t) = 0, then the pendulum is balanced in the
inverted position.

The state of the rotary inverted pendulum is defined as
xT (t) = [ϕ(t), θ(t), ϕ̇(t), θ̇(t)]. We discretize the continu-
ous system with the sampling period Ts = 0.01 to obtain the
discrete-time system.
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Fig. 4. Arm angles without quantization and with quantiza-
tion by our error feedback quantizer (dashed line) as well as
by the static quantizer (long dashed short dashed line).

Our control objective is to periodically change the arm an-
gle, while keeping the stability of the rotary inverted pendu-
lum. The target value of the arm angle ϕ̄(t) is for k = 0, 1, . . .

ϕ̄(t) =

{
π
2 (10k ≤ t < 5 + 10k)
0 (5 + 10k ≤ t < 10(k + 1))

. (22)

To control the system, we employ the state feedback con-
trol whose gain is determined by the linear quadratic regulator
(LQR) technique to minimize

∑∞
k=0

(
xT
kQlqrxk + r|uk|2

)
where the weights are Qlqr = diag[10, 2, 0.5, 0] and r =
0.05.

All of the state variables are assumed to be available.
The state variables are quantized and transmitted to the con-
troller. The transfer function Hm[z] is given by C(zI − A −
BK)−1BKm. Since Km[z] for m = 1, . . . , 4 are scalars,
we design a quantizer for C(zI − A − BK)−1B. In this
case, we have (Ah, Bh, Ch) = (A − BK,B,C). Then, our
optimization problem is numerically solved by CVX [14], an
efficient convex optimization solver.

For the quantization interval d = 0.5, Fig. 4 compares the
arm angle without quantization and with quantization by our
error feedback quantizer (dashed line) as well as by the static
quantizer (long dashed short dashed line). The dotted line de-
notes the target value. The arm angle of our designed quan-
tizer is almost the same as the arm angle of the control with-
out quantization, while the arm angle with the static quantizer
is fluctuated by quantization errors, which shows the impor-
tance and the effectiveness of the optimal error feedback filter
for the quantization with the knowledge of the system.
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