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ABSTRACT

Wavelet transform is used for efficient signal analysis in various ap-
plications. The traditional wavelet system is implemented using inte-
ger decimation factors, although frequency tiling offered by rational
decimation may better adapt to signal characteristics. In this paper,
we propose a design methodology for signal-matched filterbank (FB)
with rational decimation factors that achieves perfect reconstruction
with FIR filters. We have applied the proposed design on some real
world signals. With the proposed design, we obtain a more com-
pressible transform domain representation than the dyadic standard
wavelet transforms.

Index Terms— Rational Wavelet Transform, Critically Sam-
pled Multi-Channel Filterbank, Matched Wavelet

1. INTRODUCTION

Wavelet transform (WT) provides a way of performing multi-
resolution analysis (MRA) on signals, giving simultaneous time-
frequency information. A multilevel wavelet decomposition gives
rise to filterbank with integer decimation ratios. Uniformly deci-
mated critically sampled M-channel filterbanks decompose a signal
into uniform frequency bands. Both these structures have been ex-
tensively researched and used in several applications[1][2][3][4].
However, in certain cases, such as speech signal analysis, it may be
desirable to have a denser frequency domain representation. In such
cases, wavelet transform with rational decimation ratios or ratio-
nal filterbanks (RFBs) may prove to be advantageous compared to
uniformly decimated FBs since they allow more flexible frequency
tiling via nonuniform frequency partition [5].

Several works have been carried out to design perfect recon-
struction filter banks (PRFB) with rational dilation factors. In [6],
authors have proposed a method for the design of an overcomplete
RFB in frequency domain. However, the filters obtained are not FIR.
In [7], an iterative procedure with various linear constraints such as
regularity is used for the design of orthonormal rational FB. How-
ever, because of the iterative nature of the design algorithm, the so-
lution may not reach to the optimum point. Authors in [8] proposed
an algorithm for fast rational orthogonal WT, but the filters obtained
are IIR filters. In [5], authors have presented an algorithm to design
an overcomplete orthogonal RFB with specified number of vanishing
moments. Overcomplete structures, though less sensitive to aliasing,
add redundancy, while critically sampled structures are not burdened
by this drawback. In [9], authors designed a critically sampled bi-
orthogonal RFB structure with perfect reconstruction and regularity
properties. Their design involved solving a non-convex optimization
problem with non-linear constraints requiring the use of a cumber-
some iterative approach. So far, to the best of our knowledge, none
of the methods have designed a RFB matched to a given input signal.

Fig. 1. Two Channel Rational Filter Bank Structure.

Moreover, most of the existing methods design filters in Fourier do-
main and hence, the resulting filters may not have compact support.
In [10], authors have proposed a method to design filters matched to
a given signal for a 2-channel dyadic discrete WT (DWT).

In this paper, we propose a design for signal-matched critically
sampled RFB with different decimation factors. Both the analysis
and synthesis end filters are designed to have compact support. Such
a FB combines the advantages of a denser frequency tiling, simpler
and more compact implementation of RFB (aided by the use of FIR
filters) with a sparser representation of the input signal (due to the
matched FB design). This paper is organized as follows. In section
2, our proposed approach is discussed with implementation details.
Section 3 shows designed FBs for different input signals and results
on sparsity are compared with standard wavelets. Conclusion is pre-
sented in section 4.

2. PROPOSED DESIGN

In this paper, we intend to design a two channel rational filter bank
structure as shown in the Fig. 1. For RFB to be critically sampled,
P/M + Q/M = 1. This RFB can be represented by an equivalent
uniformly decimated M-band FB structure shown in Fig. 2, provided
it satisfies the conditions (1), (2), (3) and (4) presented below [9]:

Hlp(z) =
P∑

j=1

zM(j−1−P )Hj+Q(zP ) (1)

Glp(z) =
P∑

j=1

z−M(j−1−P )Gj+Q(zP ) (2)

Hhp(z) =
Q∑

j=1

zM(Q−j)Hj(zQ) (3)

Ghp(z) =
Q∑

j=1

z−M(Q−j)Gj(zQ), (4)

where P and Q are the upsampling factors in the lowpass and high-
pass branches of RFB, respectively, and Hi(z), i = 1, 2, ...,M and
Gi(z), i = 1, 2, ...,M are the analysis and synthesis filters in the
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Fig. 2. M-Band Critically Sampled Filter Bank Structure.

equivalent uniformly decimated M-band FB as shown in Fig. 2.
First, we design a signal-matched uniformly decimated filterbank
and later, convert that to a rational FB.

2.1. M-Band Signal Matched Analysis Filterbank

In order to design analysis filters, first we use the least squares based
approach of [10] for the design of highpass analysis filter. Next,
we use the idea of signal spectrum clip removal of [11] together
with the least squares approach of [10] to design bandpass filters
as shown in Fig. 3. The spectral clip removal approach of [11] may
lead to IIR filters at the synthesis end. Since we intend to design FIR
filterbank, the lowpass filter is designed differently by imposing the
condition that the determinant of the analysis polyphase matrix E(z)
is a monomial [1].

2.1.1. Design of analysis highpass filter

This section briefly explains the method for the design of highpass
filter using the approach mentioned in [10] for the sake of complete-
ness of the paper. Consider Fig. 3 where h1 denotes the highpass
filter, x(n) is the input signal, and d−1(n) denotes the wavelet sub-
space coefficients.

d−1(n) =
∑
k

h1(k)x(Mn− k) (5)

Next, using least squares approach, we minimize the signal energy in
this wavelet subspace to estimate highpass filter from a given input
signal. On setting the center weight of h1 to unity (without loss of
generality), the signal energy in wavelet subspace is given as (6)

E =
∑
n

(d−1(n))
2

E =
∑
n

(x(Mn− n1))
2 +

∑
n

WT X(n)XT (n)W

− 2
∑
n

WT X(n)x(Mn− n1) (6)

where W is the highpass filter vector except its center weight, n1 is
the center weight index, and X(n) consists of downsampled (by M)
signal vector. By computing derivative of E with respect to W and
equating it to zero, we obtain

∑
n

N∑
k=0

h1(k)x(Mn− k)x(Mn−m) = 0

for m = 0, 1, ..., n1 − 1, n1 + 1, ..., N, (7)

Fig. 3. M-Channel Matched Analysis Filterbank.

where N is length of the highpass filter h1.
This method leads to a closed form expression (7) that is the de-

terministic autocorrelation of the downsampled input signal. The N-
1 linear equations can then be solved to obtain the analysis wavelet
filter h1.

2.1.2. Design of analysis bandpass filters

Next, the highpass filtered spectrum of the input signal is subtracted
from the original signal spectrum as shown in Fig. 3. This filtered
signal x1(n) is used to design h̃2 using the same approach as out-
lined for highpass filter. This technique is followed for finding the
next M − 2 branches except the lowpass branch. The equivalence
between filter structures in Fig. 2 and Fig. 3 can be stated mathe-
matically as below:

h2(n) = (δ(n− n1)− h1(n)) ∗ h̃2(n) (8)

where n1 is the signal advancement inserted corresponding to the
center (unity valued) weight position of filters h1. Similar equiva-
lence holds true for other bandpass filters as well.

2.1.3. Design of analysis lowpass filter

The filter coefficients for the low pass filter, hM , that is the top most
branch in Fig. 2 are found under the constraint that the determinant
of the polyphase decomposition matrix E(z) is a monomial[1], i.e.,

det E(z) = cz−d, (9)

where E(z) =


HM1(z) HM2(z) ..... HMM (z)

. . ..... .

. . ..... .

. . ..... .
H21(z) H22(z) ..... H2M (z)
H11(z) H12(z) ..... H1M (z)

 (10)

Hi(z) = Hi1(zM ) + zHi2(zM ) + .....+ zM−1HiM (zM ) (11)

for i = 1, 2, ...,M . To ensure that hM (n) is a low pass filter, we
impose the condition shown in (12),

HM (z) = (1 + z) T(z) (12)
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where T(z) is a polynomial to be determined. In (10), only the first
row of E(z) is unknown. Readers may refer to [1] to know more on
polyphase matrices in the context of multirate filterbanks.

On using (9), (10), (11), and (12), we get a system of linear
equations (13) that can be solved to obtain the polynomial T(z) or
the coefficients of the lowpass filter, hM

D hM = [0T b 0T ]T (13)

where D is the coefficient matrix associated with the powers of z
in the determinant of E(z), hM is the vector of lowpass filter co-
efficients, and b is a positive constant. The position of constant b
determines the net delay introduced in the reconstructed signal.

2.2. Design of FIR Synthesis Filterbank for Perfect Reconstruc-
tion

In order to attain PR, synthesis filters should satisfy the condition
mentioned below [1]:

R(z) E(z) = IM×M (14)

where R(z) is the polyphase component matrix of the synthesis
filters and IM×M is an identity matrix. From (14), the matrix R(z) is
obtained as shown in (15) and (16). Each column of the R(z) ma-
trix contains the polyphase components of the corresponding filter
branch on the synthesis side. They are read in reverse order from the
last row to the first as shown in (17).

R(z) =
Adj E(z)
det E(z)

(15)

R(z) =


GMM (z) ..... G2M (z) G1M (z)

. ..... . .

. ..... . .

. ..... . .
GM2(z) ..... G22(z) G12(z)
GM1(z) ..... G21(z) G11(z)

 (16)

Gi(z) = Gi1(zM ) + zGi2(zM ) + .....+ zM−1GiM (zM ) (17)

for i = 1, 2, ...,M . From the above designed uniformly decimated
PRFB, the rational FB is obtained using (1) and (2).

Fig. 4. Test Signals.

Fig. 5. Analysis End Filters for Music Clip Input Signal.

Fig. 6. Synthesis End Filters for Music Clip Input Signal.
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Table 1. Filter Coefficients for (2/3, 1/3) RFB with Different Input Signals
S.No Input Signal Filter Coefficients

1

Music Clip
hlp: [0 0 0 0 0 0 0 0 -0.3638 -0.3023 -0.3638 -0.1077 0 0.3880 0.1634 -0.1066 0.1634 -0.3001

-0.0576 0 -0.0767 0 -0.0191]

Sampling frequency: hhp: [0 0 0 -0.2742 0.4525 -0.2733]

fs = 11.025KHz glp: [0 0 0 0.7715 0 -0.7715 -1.2867 -2.0424 -1.4623 -0.3467 -1.1305 0.3467 -1.0097 0.9177

Number of Samples = 11218 -0.2254 0.3644 0.6345 0.0814 0 -0.2290]

ghp: [0 0 0 -0.8507 0.8507 -1.3951 0.0822 -0.0822 -0.2177 0.0034 0.0828 0.1333 0.0705 0.0157

-0.0443]

2

Speech Signal
hlp: [0 0 0 0 0 0 -0.4174 0 -0.4174 -0.2371 0 -0.0157 -0.0696 0.4756 -0.0696 -0.0325 0 -0.2867

-0.0076 0 -0.0130 0 -0.0054]

Sampling frequency: hhp: [0;0;0;-0.2466;0.4860;-0.2674]

fs = 11.025KHz glp: [0 0 0 1.7974 0 0.6560 -0.7001 -0.6560 -1.0621 0.2997 -1.3338 0.1094 -0.5085 -0.1094

Number of Samples = 2713 -0.0511 0.0406 0.4506 0.0041 0 -0.0360]

ghp: [0 0 0 -0.5432 1.1667 -1.1667 0.5330 0.1945 -0.1945 0.0865 0.0288 -0.0370 0.0103 0.0010

-0.0092]

3. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our approach for
the design of a critically sampled RFB on two real signals shown in
Fig. 4. As an example, we show the design approach for RFB with
decimation ratios of 2/3 and 1/3 in the lowpass and highpass filter
branch, respectively. The RFB can be represented as an equivalent
M-band (M=3) uniformly decimated filter bank as discussed in the
previous section.

Results are shown for the following filter lengths: 3 (highpass),
5 (bandpass), and 9 (lowpass). The length of lowpass filter is kept
higher to provide enough degrees of freedom to satisfy the constraint
(9) on the determinant of E(z). PR can be achieved with other filter
lengths as well, as long as sufficient degrees of freedom are pro-
vided. Although this has been verified, results are not shown here
for brevity.

Fig. 7. Comparison of Magnitude of the Coefficients for Different
Wavelet Structures.

Fig. 5 and 6 show the designed filters for a 3-channel PRFB
corresponding to the ’speech’ signal. The filter coefficients for two
different input signals are shown in Table 1. With both the input
signals, the proposed method achieves perfect reconstruction with
RFB and the NMSE is of the order 10−15.

The magnitude plot of the sorted subband coefficients of both the
lowpass and highpass branch of a one-level decomposition of RFB is
shown in Fig. 7. We compare the proposed method with Daubechies
(Orthogonal 8-length filters), biorthogonal-9/11, and discrete Meyer
wavelets for the ’speech’ input signal. Our design of RFB with
matched filters gives better results compared to all these wavelets
in terms of compressibility of transform domain coefficients, due to
much larger number of coefficients with very low magnitude.

4. CONCLUSION

In this paper, we have proposed a method for the design of a critically
sampled rational wavelet transform with freedom to select decima-
tion ratios. The filters in the RFB are derived from the given input
signal (signal matched), and hence, yield a compact transform do-
main representation. While there is no signal matched approach for
the design of rational filterbank, most of the existing techniques for
the design of rational filter bank are also either computationally in-
tensive or rely on IIR filters to achieve perfect reconstruction. Our
method for design of rational filterbank is able to achieve 1) FIR per-
fect reconstruction filterbank, 2) follows simple procedure involv-
ing solution of a linear system of equations, and 3) designs signal-
matched structure giving improved compressibility.
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