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ABSTRACT
We propose a new filter-bank structure for the estimation and
tracking of periodicities in time series data. These filter-banks
are inspired from recent techniques on period estimation us-
ing high-dimensional dictionary representations for periodic
signals. Apart from inheriting the numerous advantages of
the dictionary based techniques over conventional period-
estimation methods such as those using the DFT, the filter-
banks proposed here expand the domain of problems that can
be addressed to a much richer set. For instance, we can now
characterize the behavior of signals whose periodic nature
changes with time. This includes signals that are periodic
only for a short duration and signals such as chirps. For such
signals, we use a time vs period plane analogous to the tradi-
tional time vs frequency plane. We will show that such filter
banks have a fundamental connection to Ramanujan Sums
and the Ramanujan Periodicity Transform.

Index Terms— Period Estimation, Time vs Period Plane,
Periodicity Filter Banks, Ramanujan Sums, Periodicity Trans-
forms.

1. INTRODUCTION

A discrete time signal x(n) is said to be periodic with period
P if P is the smallest positive integer such that

x(n+ P ) = x(n) ∀ n ∈ Z (1)

Given a finite length interval of such a signal, one often
wishes to estimate its period P . Sometimes, a periodic signal
might be generated as a sum of signals with much smaller
periods. For example, a sum of signals with periods 11 and
15 can result in a signal with period 11× 15 = 165. For such
a signal, we want to be able to detect these ‘hidden periods’
11 and 15. More generally, a signal might exhibit periodic
behavior that changes with time. Examples include signals
that are periodic only in a localized region, signals such as
chirps, and so on.

The limitations of traditional spectrum estimation tech-
niques such as those using DFT, when used for period esti-
mation, have been noticed in the past [20], [18]. As an al-
ternative, Sethares and Staley in [20] proposed several algo-
rithms based on comparing the projection energies of a given
periodic signal on a series of subspaces representing different
periodicities. These subspaces have a concatenated structure
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due to which their algorithms involve an intricate sequence
of projections. A different approach was suggested in [14],
where the authors introduced the Farey dictionary as a high-
dimensional representation for periodic signals. This dictio-
nary was based on the union of columns of several DFT ma-
trices, and was used to estimate the period by finding sparse
representations for periodic signals. In a recent paper [18],
we generalized the Farey dictionary to much simpler real val-
ued dictionaries by introducing alternatives to the DFT ma-
trix in the context of period estimation. In addition, we re-
formulated the period recovery problem into a convex pro-
gram with a closed form linear solution that offers several
orders of magnitude faster solutions than the sparsity based
techniques.

A limitation of the above methods is that they were de-
signed for signals whose periodic behavior doesn’t change
with time. To use them for characterizing more general peri-
odic behavior such as chirps, we will have to break the signal
into multiple blocks and apply these methods on each block.
In such schemes, it would be beneficial to use smaller block
lengths for detecting smaller periods and larger block lengths
for detecting larger periods to obtain good localization.

In this paper, we propose an elegant way to achieve this.
The linear solutions for the techniques presented in [18] en-
able us to design filter-bank implementations for the same.
So in Sec. 2, we will briefly review the dictionary approaches
of [18, 14]. In Sec. 3, we illustrate how to arrive at a fil-
ter bank structure starting from the dictionary methods. We
also present examples of time vs period planes obtained using
the proposed filter bank and discuss their advantages over the
traditional Short-Time Fourier Transform (STFT) based time
frequency plane. Our method yields a non-uniform tiling of
the time vs period plane similar in spirit to the wavelet tiling of
the time frequency plane [8, 15], unlike the above mentioned
block-based schemes and [7], which give a uniform tiling like
the STFT. Finally, in Sec. 4, we interpret the period identi-
fying capability of the proposed filter bank in the frequency
domain.

2. DICTIONARY METHODS FOR PERIOD
ESTIMATION

The set of all signals that satisfy x(n + P ) = x(n) for all
n forms a vector space, call it VP . It includes signals that
have divisors of P as periods. Let di, 1 ≤ i ≤ K denote the
divisors of P in increasing order, so that d1 = 1 and dK = P .
Let φ(·) denote the Euler totient function. Now consider a
matrix of the form
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A = [Cd1 Cd2 . . . CdK ] (2)
with the following properties:

1. Each Cdi is a P ×φ(di) matrix so that the total number
of columns in A is (from [3])

∑
di|P di = P. Thus A

is a P × P matrix.
2. Each column of Cdi is a length P segment of a se-

quence with period di.
3. A has full rank P.

Such a matrix will be referred to as a periodicity matrix. The
columns of A form a basis for CP , so that by periodically ex-
tending them, we can obtain a basis for VP . They were intro-
duced in [18] as generalizations of the Ramanujan Periodicity
Transform (RPT) Matrices [12]. In [11], sequences known as
Ramanujan sums [19] were identified as having several useful
properties for studying periodicities. They were used to con-
struct bases similar to (2) for VP , called the RPT matrices in
[12]. Apart from the RPT, the DFT and the Walsh-Hadamard
matrices are also examples of periodicity matrices. Taking
φ(di) columns with period di for every di|P ensures that such
a basis for VP also contains a basis for Vdi for every divisor
di of P [18].

Periodicity matrices have several important properties.
For example, if x is a vector consisting of P successive sam-
ples of a signal x(n) in VP with period di|P , and y is such
that x = Ay, then the lcm of the periods of all those columns
of A that are multiplied by non-zero entries in y is exactly
equal to the period of the signal x(n), namely di.

The above technique gives us a way of estimating the pe-
riod of a signal if it is known that it belongs to a particular VP .
We will refer to this as the lcm method. But in general, such
information might not be available a priori. So in [14] and
[18], we propose methods based on dictionaries constructed
by combining periodicity matrices of different sizes. For in-
stance, let x be a vector consisting of N successive samples
of a periodic signal x(n) whose period we want to estimate.
Consider a particular family of periodicity matrices - for ex-
ample, the RPT matrices [12]. For every d in 1 ≤ d ≤ Pmax,
where Pmax is the largest expected period, construct a d × d
periodicity matrix and take only its φ(d) columns that have
period d. Extend these columns periodically to length N ,
truncating the last period if necessary. We form a dictionary
A by collecting such columns for every d in 1 ≤ d ≤ Pmax.
If x(n) had period less than Pmax, then it has to be a linear
combination of the columns of A. This is because, if it had
period P , then the columns whose periods are divisors of P
must be able to span it, since they come from a P × P peri-
odicity matrix.

But the dictionary is likely to be fat since, Pmax is usu-
ally of the order of the length of the data, while the sum of
Euler totient function from 1 to Pmax is O( 3Pmax

2

π2 ) [3]. So
it is likely that x = Ay has multiple solutions for y. We are
interested in the one that involves subspaces corresponding to
period P and its factors so that, as in the situation when VP
is known, we might be able to estimate the period of the sig-
nal by taking the lcm of the periods of the columns of A that
are present in the solution. In [14], this was formulated as a
sparse vector recovery problem [1, 2, 4, 9, 16]. But in [18],
we showed that the recovery problem can reformulated into
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Fig. 1. Parts (a) and (b)- Strength vs period plots for a period 70 sig-
nal using (4) and (6) respectively (see text for details). Plots shown
only till period 40 for clarity since all the further values are zeros.

Fig. 2. The first 50 rows of the Pseudo-inverse matrix in (5) for
N = 200 and Pmax = 200.

a simpler convex program with a closed form solution. The
idea was to look at the period estimation problem as trying
to fit the given signal with signals having as small periods as
possible. Consider the following:

min ‖Dy‖2 s.t. x = Ay (3)

where D is a diagonal matrix whose ith diagonal entry is
f(Pi), where Pi is the period of the ith column of A and
f(·) is some increasing function. By introducing D in (3),
the columns in A that have larger periods contribute more to-
wards the objective function than those with smaller periods
for similar entries in y. So in a way, columns with larger pe-
riods are being penalized more and the algorithm will try to
use columns of A with as small periods as possible to fit x(n).
Problem (3) has a closed form solution:

y? = D−2AT
(
AD−2AT

)−1
x (4)

Fig 1 (a) shows the results of solving (3) using a Ramanu-
jan dictionary for a period 70 signal with two complete and a
third incomplete period. It was generated as a sum of a period
7 and a period 10 signal. The penalty function was chosen to
be f(P ) = P 2 and Pmax as 90. For each period, the plots
show the sum of squares of those components of the optimal
solution y? of (3) that correspond to columns of the dictio-
nary with that particular period. We do not show the period
1 component, since it is just a DC signal. We can see peaks
at periods 2, 5, 10 and 7, and using the lcm method, we con-
clude that the original signal had period 70. In addition, we
can also conclude that it was actually generated by adding a
period 7 and a period 10 signal.

3. FROM DICTIONARIES TO FILTER BANKS

Among the different choices of periodicity matrices for con-
structing the dictionary in (3), we consistently observed that
the Ramanujan design performs the best under perturbations
such as noise. Looking more closely at the form of its left-
inverse in (4),
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P = D−2AT
(
AD−2AT

)−1
(5)

we noticed that its rows have an interesting pattern. Simi-
lar to (the transpose of) the dictionary itself, the rows of the
left-inverse seem to be periodic, with exactly φ(P ) rows with
period P . For instance, Fig. 2 shows a section of the first 50
rows of a left-inverse matrix obtained from a Ramanujan dic-
tionary with parameters N = 200 and Pmax = 200. Clearly,
the first row has period 1, the second has period 2, the third
and fourth have period 3 and so on. Moreover, for many of
the periods, the φ(P ) rows corresponding to them are approx-
imately shifted versions of each other. Such a strong pattern
raises the question if we could directly design suitable ‘left-
inverses’ with the same structure without having to formulate
it as an optimization problem like (3). For instance, we ex-
perimentally observed that the following expression instead
of (4) gives equally good results (see Fig. 1 (b)):

y? = D−1ATx (6)
Using (6) has an advantage. We can implement it effi-

ciently using a filter bank. To see this, consider the case when
the input data is of infinite length (streaming data). One way
to process the signal in that case is to apply (6) on successive
input blocks of length N , each shifted by one sample. When
we use the Ramanujan dictionary, for every period P we are
taking the inner product of the input blocks with the following
φ(P ) vectors (assuming thatN , the data length, is reasonably
larger than the signal’s period P ):

C
(0)
P =[cP (0) cP (1) cP (2) . . . cP (N − 1)]T

C
(1)
P =[cP (1) cP (2) cP (3) . . . cP (N)]T

and so on till C(φ(P )−1)
P , where cP (n) represents the P th Ra-

manujan sum [11]. After dividing these inner products by
the penalty function f(P ), we sum their squares to define the
strength of that period in Fig. 1 (b):

yP =

φ(P )−1∑
i=0

∣∣∣∣∣ 〈x,C(i)
P 〉

f(P )

∣∣∣∣∣
2

(7)

Notice that the C
(i)
P ’s are periodic vectors with period P .

Moreover, they are nearly shifted versions of the same vec-
tor C

(0)
P . Based on this observation, we propose a slightly

modified implementation for (7):

yP (n) =

n∑
i=n−φ(P )+1

∣∣∣∣ (x ∗ hP )(n)

f(P )

∣∣∣∣2
where (x ∗ hP ) denotes convolution, and

hP={cP (0) cP (−1) . . . cP (−LP + 1)} (8)
={cP (0) cP (1) cP (2) . . . cP (LP − 1)} (9)

for some integerL (Ramanujan sums are symmetric: cP (n) =
cP (−n)). That is, it contains L complete periods of the Ra-
manujan sum cP (n). Choosing the filter length as LP instead
of a fixed N as in (6) effectively enables us to detect smaller
periods using smaller blocks and larger periods using larger
blocks. A collection of such filters for all periods going from
1 to Pmax, as shown in Fig. 3, is what we call as the Ra-
manujan Filter Bank (RFB). A plot of the outputs yP (n) for
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Fig. 3. Block diagram of the proposed Ramanujan filter bank.

different P across different n will be referred to as the time
vs period plane.

We show two examples here. Fig. 4(a) shows the time
vs period plane for a length 668 signal that has a randomly
generated period 3 component between samples 201 and 218
and a sum of randomly generated period 15 and period 11
components from samples 319 to 469. The sum of the pe-
riod 15 and period 11 signals is actually a signal with period
15× 11 = 165. L = 15 and f(P ) = P 2 were chosen for the
RFB. In part (a), the localized period 3 component is detected
initially. This is followed by periods 3, 5, 11 and 15 showing
up, and using the lcm method, we can conclude that the sig-
nal exhibits a periodicity of 165 and is a sum of period 15 and
period 11 components. The period 1 DC component is not
shown. The outputs of all the filters beyond period 50 were
0 and hence not shown. Note that the qth Ramanujan filter’s
output is delayed by qL/2 due to the causal implementation
(9). This causes different divisors of 15 to be detected with
different delays. To avoid this, part (b) was obtained from
part (a) by advancing the output of each Ramanujan filter hq
by bqL/2c so that all the divisors of a particular period are
expressed concurrently. Parts (c) and (d) show the time vs
frequency plane using STFT (assuming 1 Hz sampling rate).
In part (c), we had to use a rectangular window of size 128
to reasonably identify the period 11 and 15 components. The
peaks in the spectrogram correspond to periods 15.06, 11.13,
7.53, 5.56, 5.02, 3.82, 3.66, 3.01, 2.75, 2.51, 2.21 and 2.13.
These numbers roughly correspond to 11, 15 and their har-
monics. But this window was too wide to detect the period
3 component present between samples 201 and 218. So in
part (d), a window of size 32 was chosen. Although the lo-
calized period 3 component gets detected well, this window
is not sufficient to identify the period 11 and 15 components.
We do not have to worry about having different analysis for
different periods in the RFB since the length of the each filter
was chosen proportional to its period. Moreover, if the pe-
riodic signal is a superposition of a number of signals with
smaller periods such as the 11 and 15 case, then using the lcm
method of the RFB might be more convenient than searching
for fundamental frequencies in spectrograms.

In the second example, we consider the inverse chirp sig-
nal x(t) = sin (1/at) in the interval t ∈ [2, 10] seconds, with
a = 0.01/2π, sampled every 0.01s (Fig. 5(a)). The instan-
taneous period of this signal is 2πat2. This quadratic behav-
ior is evident in the time vs period plane in part (b) (L=5).
Part (d) shows the time frequency plane obtained from STFT
using a length 32 rectangular window. It captures the small
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(c) (d)

(b)
(a)

Fig. 4. Parts (a) and (b) - The time vs. period plane for a signal
exhibiting localized periodicities using RFB and shifted RFB. Parts
(c) and (d) show the time-frequency plane using STFT with window
sizes 128 and 32 respectively. Refer text for details.

Table 1. Period Estimation using STFT and the RFB

t
Instantaneous
Period STFT(32) STFT(256) RFB

2.1 s 44.1 ms 44.9 ms 71.1 ms 40 ms
7.5 s 562 ms 639 ms 512 ms 560 ms

periods well as shown in Table 1. But the larger periods
are mis-estimated. When the frequency is very small, the fi-
nite frequency resolution of STFT limits the accuracy of the
P = 1/f estimate. If we increase the window size to 256 to
better estimate the higher periods, as in Fig. 5 (c), the smaller
periods are smeared out in the time frequency plane. The esti-
mate for larger periods is still not very accurate (Table 1). The
RFB on the other hand offers good estimates for both small
and large periods. f(P ) was chosen as (φ(P ))2 here to show
that a wide choice is available for its selection.

4. RAMANUJAN FILTER BANKS - A MORE
FUNDAMENTAL APPROACH

In Sec. 3, we developed the RFB as an approximate but conve-
nient alternative to (4). We had experimentally observed that
among the various choices for the dictionary in (6), the RPT
based dictionary gave the best results. So we used it to con-
struct the filter bank, and noticed that the lcm method could
still be used to estimate the periods. The observation that Ra-
manujan filters can be used to estimate periods using the lcm
method is not just a coincidence, as shown by the following
theorem (essentially follows from Theorem 12 of [11]) :

Theorem 1. Any periodic signal x(n) can be expressed as a
sum of exponentials in a unique way as

x(n) =

K∑
i=1

αie
j2πki
qi

n
αi 6= 0 (10)

where ki and qi are integers satisfying gcd(ki, qi) = 1 ∀ i.
The period of x(n) is exactly equal to lcm{qi}, rather than a
proper divisor of it. ♦
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Fig. 5. Part (a) - Sampled inverse chirp signal. Part (b) - The time
vs. period plane using shifted RFB. Parts (c) and (d) show the time-
frequency plane using STFT with window sizes 256 and 32 respec-
tively. Refer text for details.

Now consider a signal x(n) that is periodic with period
P . It can be expressed as a sum of exponentials in the form
of (10) in a unique way through its Fourier series expansion:

x(n) =

P∑
k=1

αke
j 2πk
P n , αk =

1

P

P∑
n=1

x(n)e−j
2πk
P n (11)

by reducing each k
P to its lowest form. From Theorem 1 and

(11), to estimate the period of x(n) we need to find among the
set of all frequencies of the form { 2πkiqi

: gcd(ki, qi) = 1},
the ones at which the signal’s spectrum has non-zero energy.
We can then take the lcm of the periods qi of the exponentials
with those frequencies as an estimate for the signal’s period.

This is exactly what is happening in the RFB as the length
of the filters tends to infinity. The spectrum of the qthi Ra-
manujan filter with impulse response cqi(n) is non-zero only
at those frequencies 2πki

qi
, where gcd(ki, qi) = 1. So its out-

put will be non-zero if and only if x(n)’s decomposition into
the form (10) has a qi periodic exponential. So taking the lcm
of the indices of those Ramanujan filters that have non-zero
output (the lcm property) is indeed a valid estimate for the
period of the signal.

5. CONCLUSION AND FUTURE WORK

In this work, we introduced the idea of Ramanujan filter banks
as a tool for identifying periodic patterns in data. The property
that makes the Ramanujan filters useful is their support in the
frequency domain. We cannot replace cq(n) with an arbitrary
q periodic impulse response and expect the lcm property to
still hold. Nevertheless, we can construct a family of filters
with the same support by convolving the Ramanujan sums
cq(n) with arbitrary sequences whose spectrum is not zero at
the frequencies 2πki

q , where gcd(ki, q) = 1.
Such filter banks might be of interest in various real-world

settings, for instance in detecting seizures using EEG data
or to identify repetitive structures in protein molecules [6].
These will be part of our future efforts.
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