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ABSTRACT

In this paper, we propose a novel structured compressive sens-
ing algorithm based on non-parametric Bayesian framework
for the reconstruction of sparse entries with a continuous
structure. A paired spike-and-slab prior is first employed to
impose signal sparsity. A logistic Gaussian kernel model,
which involves the logistic model and location-dependent
Gaussian kernel, is then proposed to encourage the underlying
structure of a sparse signal. A closed-form and analytical
posterior inference is carried out in a Gibbs sampling scheme.
Simulation results demonstrate that the proposed algorithm
outperforms existing state-of-the-art sparse Bayesian learning
algorithms.

Index Terms— Compressive sensing, sparse Bayesian
learning, Gaussian kernel, logistic model

1. INTRODUCTION

Sparse signal recovery and the associated compressive sens-
ing (CS) approaches have attracted significant attention in
recent years [1, 2]. CS techniques have the capability to
recover signals from a small number of measurement samples
with a high probability, provided that the signals are sparse or
can be sparsely represented in some known domains.

A typical sparse reconstruction problem in the CS model
is given by,

y = Φw + ε, (1)

where y ∈ RN and ε ∈ RN is an unknown zero-mean
Gaussian noise vector. Φ ∈ RN×M is a known and
wide dictionary matrix due to N � M , and hence loses
information in general. However, it can be shown to preserve
the information in a sparse or compressible signal if the
so-called restricted isometry property (RIP) is satisfied [2].
Define δA as the constant of RIP for a sensing matrix Φ ∈
RN×M . If

N >
2

cδA

(
ln(2mK) +K ln

12

δA
+ t

)
, (2)

The work of Q. Wu, Y. D. Zhang, and M. G. Amin was supported in part by

a subcontract with Defense Engineering Corporation for research sponsored

by the Air Force Research Laboratory under Contract FA8650-12-D-1376.

where mK =
(
M
N

)
for a K-sparse signal, and c > 0 is a

constant, then its RIP is held for all elements in the subspace
with probability 1− e−t [3].

A number of algorithms have been proposed to recover
sparse signals. Commonly used algorithms include greedy al-
gorithms, such as block orthogonal matching pursuit (BOMP)
[4], and dynamic programming algorithms, such as basis
pursuit (BP) [5], its extended version for denoising [6], and
Lasso algorithm [7]. While all these algorithms are able
to reconstruct sparse signals, they require information about
the number of non-zero element block either explicitly or
through setting of the regularization parameter, which, in
practice, may not be easily obtained. Bayesian approaches
form a different class of sparse signal reconstruction al-
gorithms, which generally yield improved performance [8–
10]. Sparse Bayesian learning algorithms [8–15] provide
effective solutions to a large class of problems based on
a non-parametric Bayesian framework, and thus have the
capability of inferring the sparsity parameter and avoiding
the nuisance parameters. However, these algorithms do
not exploit the underlying features described as the spatial
structure of the pixel locations. In fact, various spatial
characteristics can be exploited in practice. For example,
in through-the-wall imaging and structural health monitoring,
targets and flaws of interest often have extended occupancies
that are clustered in the image domain [16–19]. In the time-
frequency analysis, frequency modulated (FM) signals have
a sparse and continuous signatures in the time-frequency
domain [20].

In this paper, inspired by the algorithms in [21–24] with
the exploitation of sparse signal structures, we propose a
novel logistic Gaussian kernel based algorithm to improve
sparse signal reconstruction by exploiting the locations fea-
tures. A spike-and-slab prior is first employed to impose the
signal sparsity. Unlike other approaches, such as [22–24],
which assign specific pattern priors for the exploitation of
clustered structures, a novel logistic Gaussian kernel model,
which involves the logistic model and location-dependent
Gaussian kernel, is proposed to automatically utilize the
underlying contiguous structure. Finally, the posterior dis-
tribution of the model is analytically derived in the Gibbs
sampling scheme, although it is difficult to acquire a closed-
form posterior inference from either the logistic model or
Gaussian kernel.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). (.)T denotes the transpose
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a matrix or vector. diag(x) represents a diagonal matrix that
uses the elements of x as its diagonal elements. “ ◦ ” denotes
an element-wise multiplication. p(·) denotes the probability
density function (pdf), and N (x|a, b) denotes that random
variable x follows a Gaussian distribution with mean a and
variance b. Gamma(x|a, b) denotes that random variable x
follows a Gamma distribution with parameters a and b, and
Bern(x|π) implies that random variable x follows a Bernoulli
distribution with weight π.

2. GENERATIVE MODEL

2.1. Spike-and-slab prior for signal sparsity

To encourage signal sparsity, we place a spike-and-slab prior
on w, similar to [22, 25, 26], i.e.,

p(w|π,β) =
M∏
i=1

[
(1− πi)δ(wi) + πiN (wi|0, β−1

i )
]
, (3)

where πi is the prior probability of a non-zero element,
i.e., a large weight πi corresponds to a high probability that
the entry takes a non-zero value, whereas a small πi tends
to generate a zero entry. In addition, βi is the precision
(reciprocal of the variance) of Gaussian distribution and δ(x)
is the Dirac delta function.

The presence of the delta function in (3) makes the infer-
ence troublesome. However, there exists a simple reparame-
terization of the spike-and-slab prior [23, 25, 26]. Specially,
assume a Gaussian random vector θ = [θ1, ..., θM ]T with

p(θ) =
∏M

i=1 N (θi|0, β−1
i ), and a Bernoulli random vector

z = [z1, ..., zM ]T with p(z) =
∏M

i=1 Bern(zi|πi), where
zi = 1 corresponds to a non-zero entry in the ith position.
The product of these latent vectors w = θ ◦ z follows the pdf
in (3), i.e.,

p(θ, z) =

M∏
i=1

[N (θi|0, β−1
i )

]zi
πzi
i (1− πi)

1−zi . (4)

To acquire the trackable posterior of βi, we place a Gamma
prior, which is the conjugate to the Gaussian distribution,
on βi, i.e., Gamma(βi|a, b), i ∈ [1, · · · ,M ], where a and
b are hyper-parameters. A Gaussian prior is placed on the

additive noise as ε ∼ N (ε|0, α−1
0 IK). In a similar way, we

place a Gamma prior on α0 to acquire an analytical posterior
distribution, i.e., Gamma(α0|c, d), where c and d are hyper-
parameters.

2.2. Logistic Gaussian kernel model for signal structure

Inspired by the CluSS-MCMC algorithm [22], which imposes
local patterned priors for the clustered structure, a logistic
Gaussian kernel model is proposed to encourage the under-
lying continuous structure of pixels within the image. Un-
like CluSS-MCMC BCS, which manually categorizes a few
specific patterns and assigns corresponding hyper-parameters
for each pattern to encourage the clustered structure, the
proposed algorithm employs a kernel method to achieve
this function by exploiting the physical location of pixels.

Therefore, the proposed algorithm has the capability to model
the relationship of the entire pixels within the image.

In Section 2.1, the variable zi follows a Bernoulli distribu-
tion with weight πi. We employ a logistic function to express
πi in term of xi as

πi =
1

1 + e−xi
. (5)

To model the continuous structure of the pixels’ support in the
image, a Gaussian kernel is introduced and expressed as,

x ∼ N (0,Σ), (6)

Σij = exp

(
−‖si − sj‖2

σ0

)
, (7)

for i, j ∈ (1, · · · ,M), where si and sj are physical locations
of the ith and jth pixels within the image, and σ0 > 0 is a
scale parameter.

Notice in Eq. (6) that the kernel matrix is a real, symmet-
ric, and Toeplitz, and all entries take values within [0, 1]. The
diagonal entries take the value of unity because ‖si−sj‖2 = 0
for i = j, and the values decrease for off-diagonal elements,
depending on the distance from the main diagonal. When all
the other pixels are involved in deciding the prior probability
of a pixel under consideration, those which are closer to the
underlying pixel have stronger influence than others. As such,
the logistic model allows a soft-thresholding weights rather
than the hard-thresholding ones used in the existing methods
[17, 20, 22, 23].

It should be pointed out that σ0 is an important parameter
that determines the shape of a Gaussian function and, thereby,
the locality scale of the signal structure. When σ0 → ∞,
all entries in the matrix Σ would approach 1. It represents
that the supports of all the pixels in the image are highly
correlated. When σ0 → 0, on the other hand, the model will
reduce to a typical sparse regression without consideration of
the location information. In the conventional way, the value
of σ0 is assigned to be a factor of 2.

3. POSTERIOR INFERENCE

In this section, we adopt a Gibbs sampler to perform Bayesian
inference. For convenience, we first define the collection of

hyper-parameters as Ξ
�
= {a, b, c, d, σ0} and the collection of

random variables as Θ
�
= {θ, z,x, α0,β}.

The explicit form of the joint pdf is

p (y,Φ,Θ,Ξ) = N (y|Φ(θ ◦ z), α−1
0 IN )Gamma(α0|c, d)

×
M∏
i=1

N (θi|0, β−1
i )Gamma(βi|a, b)

×
M∏
i=1

Bern

(
xi

∣∣∣∣ 1

1 + e−xi

)
N (x|0,Σ).

(8)
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3.1. Bayesian Inference Based on Gibbs Sampler

3.1.1. Updating paired variables {θi, zi}
Similar to the inference of {θi, zi} in [22], the paired Gibbs
sampler iteratively samples from the following conditional
pdf

p(θi, zi|θ\i, z\i,y) = p(θi|zi,θ\i, z\i,y)p(zi|θ\i, z\i,y),
(9)

where θ\i denotes vector θ with variable θi excluded, and z\i
denotes vector z except variable zi.

By utilizing the marginal distribution principle, we have

p(zi|θ\i, z\i,y) =
∫

p(zi, θi|θ\i, z\i,y)dθi, (10)

where

p(zi, θi|θ\i, z\i,y,x) ∝ N (y\i|,φiziθi, α
−1
0 IN )

×N (θi|0, β−1
i )[1/(1 + e−xi)]zi

× [e−xi/(1 + e−xi)]1−zi , (11)

y\i = y − ∑
k �=i φkzkθk, and φi represents the ith column

of the measurement matrix Φ. The probability of p(zi =
1|θ\i, z\i,y) is analytically acquired to be

p(zi = 1|θ\i, z\i,y)=
1

1 + e−u
, (12)

u=
1

2

(
log βi − log σi + σ−1

i α2
0y

H
\iφiφ

H
i y\i + 2xi

)
, (13)

σi=(α0φ
H
i φi + βi)

−1. (14)

The conditional distribution of p(θi|zi = 1,θ\i, z\i,y)
can be expressed as

p(θi|zi = 1,θ\i, z\i,y) = N (θi|σ−1
i α0φ

H
i y\i, σi). (15)

When zi = 0, the variable θi is drawn from the prior. As
such, we obtain

p(θi|zi = 0,θ\i, z\i,y) = 0. (16)

3.1.2. Updating variables x

It is generally difficult to perform inference for variable x,
because it is not conjugate between the logistical distribu-
tion and the Gaussian distribution [27]. Some strategies,
such as analytic approximations, numerical integration, and
Metropolis-Hastings, can be used to perform the approxima-
tion of complex pdf [28]. In the proposed model, however,
we can acquire an analytical posterior inference for x by
following the auto-augmentation technique for the logistic
model, which introduces an Polya-Gamma random variable
vector q [29],

p(x|q,κ,Σ) ∝ N (x|ν,Λ)N (x,0,Σ)

= N (x|λ,Γ), (17)

λ = Γ−1Λ−1ν, (18)

Γ =
[
Λ−1 +Σ−1

]−1
, (19)

where Λ = diag(q−1
1 , · · · , q−1

M ) and ν = [κ1/q1, · · · ,
κM/qM ]T with κi = zi/2. In addition, the augmented
variable qi is updated as,

p(qi|xi) = PG(qi|1, xi). (20)

where PG is the Polya-Gamma distribution.

3.1.3. Updating signal precision β

By utilizing the conjugate property of the Gaussian and
Gamma distribution, we analytically acquire the posterior
distribution of the precision variable βi as

p(βi|a, b,θ) = Gamma
(
βi|a+ 1/2, b+ θ2i /2

)
, (21)

where i ∈ {1, · · · ,M}.

3.1.4. Updating noise precision α0

Similar to βi, we obtain the posterior distribution of noise
precision α0

p(α0|c, d,y,Φ,θ, z) = Gamma (α0|c+N/2, d+ η) ,
(22)

where η = ‖y −Φ(θ ◦ z)‖2/2.
In general, the posterior distributions of random variables

{θ, z, α0,β} will easily be obtained due to the conjugate
property. For the variables x in the logistic model, an
effective data-augmentation strategy is employed to acquire
an analytical and closed-form posterior distribution. In
conclusion, the proposed model can be analytically evaluated.

The computational cost of the proposed method is mainly
due to the matrix inversion in Eq. (19), which involves
M × M matrix inversion and generally requires O(M3)
operations. However, by exploiting the property of Toeplitz
matrix inversion, the complexity can be reduced to O(M2)
[30], which is comparable to that of the other BCS methods
[9, 10, 22, 24].

4. EXPERIMENTS
The experiments use the same setting where the hyper-
parameters for the prior are set as follows: a = b = c =
d = 10−6. To evaluate the reconstruction performance
of different CS methods, the normalized mean square error
(NMSE) ‖ŵ − wgen‖22/‖wgen‖22 is used as the performance
index, where ŵ is the estimate of the true signal wgen.

The following state-of-art algorithms are included for
performance comparison: basis pursuit denoising (BPDN)[6],
BCS algorithm [9], BCS with Laplace prior (BCS-L) [10],
and clustered BCS method (CluSS-MCMC) [22].

4.1. Binary image reconstruction

In the first experiment, we consider a binary image for the
letter ‘C’ with the size of 16 × 16 and the sparsity number
K = 32, as shown in Fig. 1(a) . The measurement matrix
Φ ∈ RN×M is generated as a zero mean random Gaussian
matrix with columns normalized to unit l2 norm. Gaussian
noise is added to the observations so that the signal-to-noise
ratio (SNR) is 20 dB. The length of the observation K is 90,
and the scale parameter is 24.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Reconstructed results from different methods. (a) original

binary image; (b) BPDN; (c) BCS based on RVM; (d) BCS with

Laplace prior; (e) CluSS-MCMC; and (f) proposed algorithm.
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Fig. 2. NMSE versus (a) number of measurements and (b) scale

parameter σ0.

The reconstructed images based on the aforementioned
state-of-art algorithms are respectively given in Figs. 1(b)–
1(f). It is evident that the proposed algorithm has the
capability of recovering the binary image by exploiting the
location information of pixels, as shown in Fig. 1(f). Fig.
1(e) shows the result obtained from the CluSS-MCMC al-
gorithm, where only the four 1st-order neighboring pixels
are considered for the sparsity pattern. However, it results
in more spurious pixels adjacent to the true pixels than that
in Fig. 1(f), because the imposed pattern prior favors the
appearance of non-zero valued neighboring pixels. Due to the
limited number of measurements N , CS methods that do not
exploit the underlying continuous structure, i.e., BPDN, BCS
based on RVM and BCS based on Laplace prior, yield highly
noisy results in Figs. 1(b)–1(d), respectively. In general, the
reconstructed results in Figs. 1(e) and 1(f), which exploit the
structure features, are much better than those from Figs. 1(b)–
1(d), and the proposed algorithm shows less distortion as
compared to the CluSS-MCMC algorithm.

4.2. NMSE versus number of measurements

Now we examine the required number of measurements to
achieve successful reconstruction. In this experiment, the
same binary image is adopted and the number of mea-
surements K varies between 60 and 150. No noise is
assumed. Fig. 2(a) shows the errorbar plot, which includes
the means and standard deviations, of the NMSE obtained
from 100 repeated trials with respect to the number of
measurements. It is evident that the proposed algorithm
exhibits significant improvement. The sparse signals can
be reconstructed by only K = 90 measurements in the
proposed algorithm, whereas the required number for the
CluSS-MCMC is K = 98, and a much higher number is
required for reliable reconstruction using the BPDN, BCS and
BCS-L algorithms.

4.3. NMSE versus scale parameter

Considering the effect of the scale parameter σ0 in the
Gaussian kernel on the covariance matrix Σ, we analyze the
NMSE performance versus σ0 and provide a guidance for the
selection of σ0. Following the common practice, we take the
value of σ0 to be a factor of 2 and, in the underlying case,
between 2−2 and 26.

Fig. 2(b) shows the reconstructed NMSE, averaged over
100 repeated trials, with respect to σ0. The NMSE is robust
to the σ0 when the number of measurement is sufficiently
high (K ≥ 140). As mentioned in Section 2.2, when
σ0 takes a small value, the proposed algorithm reduces to
the conventional BCS algorithm, which can recover sparse
signals when a high number of measurements is available.
When the number of measurements is small (< 60), on the
other hand, the NMSE regrades rapidly, regardless of the
value of σ0. It is interesting to note that, when K takes
a moderate value of 90, the NMSE is poor in the case a
small value of σ0 < 23 is used. It implies that a weak
dependency between pixels leads to a poor reconstruction
result. On the other hand, the sparse binary image can be
successfully recovered with a small NMSE (< 0.005) when
a strong dependency is imposed with σ0 ≥ 23. As such, this
result demonstrates the importance of exploiting the image
structure and the flexibility of the proposed algorithm.

5. CONCLUSION

Compressive sensing techniques are capable of reconstructing
sparse signals from a small number of measurements. In
addition to the sparse property, the coefficients of sparse
signals often exhibit special structures. In this paper, a struc-
tured Bayesian compressive sensing algorithm is proposed
to improve the reconstruction performance by exploiting the
location information of pixels in a non-parametric Bayesian
framework. Specifically, an adaptive logistic Gaussian kernel
model, which combines the logistic model and location-
dependent Gaussian kernel, was developed to encourage the
underlying continuous structure of signals, and an analytical
and closed-form posterior inference was derived. Experi-
mental results demonstrated the superiority of the proposed
algorithm over the state-of-the-art sparse reconstruction algo-
rithms.
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