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ABSTRACT 

We develop a fully-distributed iterative algorithm for 

finding a model-distributed least-squares solution of systems 

of linear equations over sensor networks. Here, model-

distributed means the solution vector is distributed across the 

network rather than being replicated at each node. For this 

purpose, we devise a dual regularized least-squares problem 

via a suitable decomposition of the normal equations 

associated with the original problem. The resultant dual 

problem can be solved in a fully-decentralized and iterative 

manner by means of the diffusion-based Pareto optimization 

strategy. We verify the usefulness of the proposed algorithm 

via both theoretical analysis and numerical examples. 

 

Index Terms—Model distribution; distributed solvers; 

iterative solvers; diffusion adaptation; wireless sensor 

networks; least squares. 

1. INTRODUCTION 

Computational algorithms for solving systems of linear 

equations constitute a significant part of numerical linear 

algebra and play a key role for many signal-processing 

applications. As a standard approach, the method of least 

squares (LS) is used to yield an approximate solution of over-

determined systems of linear equations in which there are 

more equations than unknowns [1]. 

Consider the following over-determined system of linear 

equations: 

 𝐀𝐱 ≈ 𝐛 (1) 

where 𝐀 ∈ ℝ𝐾×𝐿 is the system matrix, 𝐱 ∈ ℝ𝐿×1 is the 

solution vector, 𝐛 ∈ ℝ𝐾×1 is the observation vector, 𝐿 ∈ ℕ is 

the system order, and 𝐾 ∈ ℕ ≥ 𝐿 is the number of equations. 

The LS problem associated with solving (1) for 𝐱 is posed as 

the following minimization problem: 

 min
𝐱

‖𝐀𝐱 − 𝐛‖2 (2) 

In many applications, solutions to systems of linear 

equations or their corresponding LS problems need be 

obtained over a sensor network where each node houses a part 

of the data, 𝐀 and 𝐛 [2]-[4]. Nodes of a sensor network are 

normally capable of acting autonomously but often pursue a 

common goal through collaboration. Critical resources of the 

sensor nodes, specifically their energy supply and 

computational capacity, are typically constrained. Therefore, 

it is imperative to limit the internode communications to only 

within the immediate neighborhood as well as minimize the 

computational complexity when performing any task over a 

sensor network. 

Several techniques have been proposed to solve the LS 

problem (2) over a network of agents (nodes) in a fully 

distributed manner, i.e., without the use of any fusion center, 

clustering, or multi-hop communication. Among them are the 

adaptive distributed estimation algorithms based on 

consensus, e.g., [5]-[8], or diffusion, e.g., [9]-[21], together 

with the push-sum-based algorithm of [2]. In these works, 𝐀 

is assumed to be distributed over the network nodes in a row-

wise fashion. The 𝑘th entry of 𝐛 is also assumed to be 

observed in the node that has the 𝑘th row of 𝐀. Thus, each 

node calculates an estimate replica of the solution vector 𝐱 

and cooperation of the nodes helps improve the overall 

estimation performance. 

In this paper, we consider the case where the matrix 𝐀 is 

distributed among 𝑁 ∈ ℕ nodes of a connected sensor 

network in a column-wise fashion and 𝐛 is accessible by at 

least one node. Accordingly, the matrix 𝐀 is divided by 

columns into 𝑁 blocks and each node 𝑖 ∈ {1,2, … , 𝑁} has 

access to a block of 𝐿𝑖 ∈ ℕ columns, denoted by 𝐀𝑖 ∈ ℝ𝐾×𝐿𝑖. 

Consistent with the partitioning of 𝐀, the solution vector 𝐱 is 

also divided into 𝑁 subvectors so that each node 𝑖 is 

responsible for its subvector, denoted by 𝐱𝑖 ∈ ℝ𝐿𝑖×1, that 

corresponds to 𝐀𝑖 . Hence, we have 

𝐀 = [𝐀1|𝐀2| … |𝐀𝑁], 

𝐱 = [𝐱1
⊤|𝐱2

⊤| … |𝐱𝑁
⊤]⊤, 

∑𝐿𝑖

𝑁

𝑖=1

= 𝐿. 

This scenario is referred to here as the model-distributed 

LS problem. To the best of our knowledge, such a problem 

has previously only been considered in [22]. However, the 

algorithm proposed in [22], which is based on the idea of 
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multi-splitting of 𝐀 [23], requires flooding of certain data at 

each iteration, which necessitates broadcast (global) 

communications. Therefore, this algorithm is not suitable for 

sensor network applications, even so it can be effectively 

implemented over a parallel computing platform. Moreover, 

although related in spirit to our work, [34] deals with the 

problem of model-distributed dictionary learning over sensor 

networks. 

Our approach to the solution of the considered model-

distributed LS problem is through the definition of a 

distributed convex optimization problem, which is also of LS 

type and can be viewed as the dual of the original problem. 

We solve this dual problem using the gradient-descent diffuse 

strategy for distributed Pareto optimization developed in [24], 

[25] and further studied in [3], [4], [26]-[28]. The proposed 

algorithm is iterative, fully distributed, has a per-iteration per-

node computational complexity of 𝒪(𝐿𝑖𝐾), and requires the 

nodes to share a vector of size 𝐾 with their immediate 

neighbors at each iteration. Interestingly, nodes need not 

share their partial knowledge of 𝐀 or 𝐱 with the other nodes 

but exchange only their estimates of a common vector that is 

the solution of the defined dual problem. This common vector 

cannot be used to extrapolate any information about the 

primary data of other nodes. Thus, the proposed algorithm in 

fact respects the possible data privacy of the nodes. 

We analyze the convergence performance of the proposed 

algorithm and find a region for its step-size that guarantees 

its stability. We also show that the algorithm converges to the 

exact solution in all the nodes when the step-size tends to 

zero. Numerical examples corroborate the effectiveness of 

the proposed algorithm. 

2. ALGORITHM DESCRIPTION 

Solving the system of linear equations (1) for 𝐱 can be cast 

as a regularized LS problem expressed by 

 min
𝐱

{‖𝐀𝐱 − 𝐛‖2 + 𝜂‖𝐱‖2} (3) 

where ‖∙‖ stands for the Euclidean norm and 𝜂 ∈ ℝ>0  is the 

regularization parameter. The main reason for regularization 

is to prevent the problem from being ill-posed due to possible 

rank-deficiency of 𝐀. 

The normal equations associated with (3) are written as 

(𝐀⊤𝐀 + 𝜂𝐈𝐿)𝐱 = 𝐀⊤𝐛 

where 𝐈𝐿 is the 𝐿 × 𝐿 identity matrix. Consequently, 𝐱 is 

given by 

𝐱 = (𝐀⊤𝐀 + 𝜂𝐈𝐿)
−1𝐀⊤𝐛 

= 𝐀⊤(𝐀𝐀⊤ + 𝜂𝐈𝐾)−1𝐛 
= 𝐀⊤𝐟𝑜 

where 

𝐟𝑜 = (𝐀𝐀⊤ + 𝜂𝐈𝐾)−1𝐛 ∈ ℝ𝐾×1. 

If 𝐟𝑜 is known globally throughout the network, each node 𝑖 
can calculate its associated part of 𝐱 via 

𝐱𝑖 = 𝐀𝑖
⊤𝐟𝑜. 

In order to compute 𝐟𝑜 in all nodes using only in-network 

processing and local communications, we employ the 

diffusion strategy for distributed Pareto optimization 

developed in [24], [25]. To this end, we define the following 

quadratic global cost function whose unique minimizer is 𝐟𝑜: 

 
𝒥(𝐟) =

1

2
𝐟⊤(𝐀𝐀⊤ + 𝜂𝐈𝐾)𝐟 − 𝐟⊤𝐛. (4) 

Since, we have 

𝐀𝐀⊤ = ∑ 𝐀𝑖𝐀𝑖
⊤

𝑁

𝑖=1

, 

the function 𝒥(𝐟) can be written as the sum of node-specific 

individual cost functions: 

𝒥(𝐟) = ∑𝐽𝑖(𝐟)

𝑁

𝑖=1

 

where 

𝐽𝑖(𝐟) =
1

2
𝐟⊤ (𝐀𝑖𝐀𝑖

⊤ +
𝜂

𝑁
𝐈) 𝐟 −

𝛿𝑖

𝐵
𝐟⊤𝐛, 

𝛿𝑖 = {
1 if 𝐛 is available at node 𝑖
0 if 𝐛 is not available at node 𝑖,

 

and 𝐵 ∈ ℕ is the number of nodes that have access to 𝐛. 

Using the adapt-then-combine diffusion strategy, we can 

iteratively minimize (4) over the network in a fully-

distributed manner and obtain an estimate of 𝐟𝑜 at each node 

𝑖 and iteration 𝑛, denoted by 𝐟𝑖,𝑛. The relevant recursive 

iterations take the following form: 

 𝐠𝑖,𝑛−1 = 𝐟𝑖,𝑛−1 − 𝜇 ∇𝐟𝐽𝑖(𝐟𝑖,𝑛−1) 

= [𝐈𝐾 − 𝜇 (𝐀𝑖𝐀𝑖
⊤ +

𝜂

𝑁
𝐈𝐾)] 𝐟𝑖,𝑛−1 +

𝜇𝛿𝑖

𝐵
𝐛 

(5) 

     𝐟𝑖,𝑛 = ∑ 𝑐𝑖,𝑗𝐠𝑗,𝑛

𝑗∈𝒩𝑖

 (6) 

where 𝐠𝑖,𝑛 is the intermediate estimate at node 𝑖 and iteration 

𝑛 and 𝜇 ∈ ℝ>0 is the step-size parameter. The set 𝒩𝑖 denotes 

the closed neighborhood of node 𝑖, i.e., it comprises all nodes 

that are connected to node 𝑖 within one hop including the 

node 𝑖 itself. The combination weights {𝑐𝑖,𝑗} are positive real 

numbers that satisfy 

∑ 𝑐𝑖,𝑗

𝑁

𝑗=1

= ∑𝑐𝑖,𝑗

𝑁

𝑖=1

= 1 

𝑐𝑖,𝑗 = 0  if  𝑗 ∉ 𝒩𝑖, 

which implies that the combination matrix 𝐂 composed of 

{𝑐𝑖,𝑗} is doubly-stochastic. Obviously, nodes share their 

intermediate estimates only with their neighbors at each 

iteration. 
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3. CONVERGENCE ANALYSIS 

The cost function of node 𝑖, 𝐽𝑖(𝐟), is twice continuously 

differentiable and has an invariant positive-definite Hessian 

matrix: 

 𝐇𝑖 = ∇𝐟
2𝐽𝑖(𝐟) 

= (𝐀𝑖𝐀𝑖
⊤ +

𝜂

𝑁
𝐈𝐾). 

(7) 

Therefore, we have [29] 

 ∇𝐟𝐽𝑖(𝐟𝑖,𝑛−1) = ∇𝐟𝐽𝑖(𝐟
𝑜) − 𝐇𝑖(𝐟

𝑜 − 𝐟𝑖,𝑛−1). (8) 

Subtracting (5)-(6) from 𝐟𝑜 and using (7)-(8) give 

 �̌�𝑖,𝑛−1 = [𝐈𝐾 − 𝜇 (𝐀𝑖𝐀𝑖
⊤ +

𝜂

𝑁
𝐈𝐾)] 𝐟𝑖,𝑛−1

+ 𝜇 (𝐀𝑖𝐀𝑖
⊤ +

𝜂

𝑁
𝐈𝐾) 𝐟𝑜 − 𝜇

𝛿𝑖

𝐵
𝐛 

(9) 

 𝐟𝑖,𝑛 = ∑ 𝑐𝑖,𝑗�̌�𝑗,𝑛

𝑗∈𝒩𝑖

 (10) 

where 

�̌�𝑖,𝑛 = 𝐟𝑜 − 𝐠𝑖,𝑛 

𝐟𝑖,𝑛 = 𝐟𝑜 − 𝐟𝑖,𝑛. 

If we further define 

�̌�𝑛 = [

�̌�1,𝑛

⋮
�̌�𝑁,𝑛

]  and  𝐟𝑛 = [
𝐟1,𝑛

⋮
𝐟𝑁,𝑛

] 

and collect (9) and (10) for all 𝑖, we arrive at 

 𝐟𝑛 = �́�(𝐈𝐾𝑁 − 𝜇𝐃)𝐟𝑛−1 + 𝜇�́�𝐪 (11) 

where 

𝐃 = blockdiag {𝐀1𝐀1
⊤ +

𝜂

𝑁
𝐈𝐾 , … , 𝐀𝑁𝐀𝑁

⊤ +
𝜂

𝑁
𝐈𝐾}, 

𝐪 =

[
 
 
 
 (𝐀1𝐀1

⊤ +
𝜂

𝑁
𝐈𝐾) 𝐟𝑜 −

𝛿1

𝐵
𝐛

⋮

(𝐀𝑁𝐀𝑁
⊤ +

𝜂

𝑁
𝐈𝐾) 𝐟𝑜 −

𝛿𝑁

𝐵
𝐛]
 
 
 
 

, 

�́� = 𝐂 ⊗ 𝐈𝐾 , 

and ⊗ is Kronecker product. 

As 𝐂 is doubly-stochastic, �́� is also doubly-stochastic and 

can be associated with a non-expansive mapping. Therefore, 

the recursion (11) is stable and convergent if 𝐈𝐾𝑁 − 𝜇𝐃 is 

stable, i.e., 

𝑟{𝐈𝐾𝑁 − 𝜇𝐃} < 1 

or 

 
0 < 𝜇 <

2

𝑟{𝐃}
 (12) 

where 𝑟{∙} denotes the spectral radius. Considering the 

definition of 𝐃, its spectral radius is calculated as 

𝑟{𝐃} = max
𝑖

𝑟{𝐀𝑖𝐀𝑖
⊤} +

𝜂

𝑁
 

= max
𝑖

𝑟{𝐀𝑖
⊤𝐀𝑖} +

𝜂

𝑁
. 

If 𝜇 is properly chosen to satisfy (12), (11) will converge to 

𝐟∞ = lim
𝑛→∞

𝐟𝑛 

= 𝜇(𝐈𝐾𝑁 − �́� + 𝜇�́�𝐃)
−1

�́�𝐪. 

Being doubly-stochastic, 𝐂 has a unique eigenvalue at one 

and both its right and left eigenvectors corresponding to this 

eigenvalue are 1/√𝑁𝟏𝑁 where 𝟏𝑁 is the 𝑁 × 1 all-ones 

vector [30]. Therefore, 𝐈𝐾𝑁 − �́� has 𝐾 eigenvalues at zero 

with the corresponding (left and right) eigenvectors that are 

the columns of 1/√𝑁𝟏𝑁 ⊗ 𝐈𝐾. Thus, according to 

Proposition 2 of [31], which can be seen as a substitute of the 

l’Hôpital’s rule for matrices, we have 

lim
𝜇→0

𝜇(𝐈𝐾𝑁 − �́� + 𝜇�́�𝐃)
−1

= 𝐒 (
1

𝑁
𝟏𝑁𝟏𝑁

⊤ ⊗ 𝐈𝐾) 

where 

𝐒 = [(𝐈𝐾𝑁 − �́�)
⊤
(𝐈𝐾𝑁 − �́�) + 𝐃�́�⊤�́�𝐃]

−1

𝐃�́�⊤. 

Consequently, we have 

lim
𝜇→0

𝐟∞ = 𝐒 (
1

𝑁
𝟏𝑁𝟏𝑁

⊤ ⊗ 𝐈𝐾) �́�𝐪 

=
1

𝑁
𝐒 [

𝐈𝐾 ⋯ 𝐈𝐾
⋮ ⋱ ⋮
𝐈𝐾 ⋯ 𝐈𝐾

]

[
 
 
 
 (𝐀1𝐀1

⊤ +
𝜂

𝑁
𝐈𝐾) 𝐟𝑜 −

𝛿1

𝐵
𝐛

⋮

(𝐀𝑁𝐀𝑁
⊤ +

𝜂

𝑁
𝐈𝐾) 𝐟𝑜 −

𝛿𝑁

𝐵
𝐛]
 
 
 
 

 

=
1

𝑁
𝐒

[
 
 
 
 (∑ 𝐀𝑖𝐀𝑖

⊤ +
𝑁

𝑖=1
𝜂𝐈𝐾) 𝐟𝑜 − 𝐛

⋮

(∑ 𝐀𝑖𝐀𝑖
⊤ +

𝑁

𝑖=1
𝜂𝐈𝐾) 𝐟𝑜 − 𝐛

]
 
 
 
 

 

= 𝟎𝐾𝑁 

where 𝟎𝐾𝑁 is the 𝐾𝑁 × 1 zero vector. This means that 𝐟𝑖,𝑛 for 

all 𝑖 converge to 𝐟𝑜 when the step-size tends to zero. 

4. NUMERICAL EXAMPLES 

We consider an application of multichannel system 

identification [32] over a sensor network with 𝑁 = 10 nodes 

and a topology as shown in Fig. 1. Each channel has a length 

of 𝐿𝑖 = 2 and is identified at one node; hence, we have 𝐿 =
20. We place 𝐾 = 50 regressor vectors in 𝐀 as its rows. 

These vectors are zero-mean multivariate Gaussian with an 

arbitrary covariance matrix. Each node has access to a 𝐾 ×
𝐿𝑖 = 50 × 2 column block of 𝐀. The entries of 𝐛, denoted by 
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𝑏𝑘 ∈ ℝ, are related to the rows of 𝐀, denoted by 𝐚𝑘 ∈ ℝ1×𝐿, 

via 

𝑏𝑘 = ∑𝐚𝑘,𝑖𝐡𝑖

𝑁

𝑖=1

+ 𝑣𝑘 

where 𝐚𝑘,𝑖 ∈ ℝ1×𝐿𝑖 is the part of 𝐚𝑘 that is available in node 

𝑖, 𝐡𝑖 ∈ ℝ𝐿𝑖×1 is the system parameter vector of the 𝑖th 

channel, and 𝑣𝑘 ∈ ℝ is zero-mean Gaussian noise with a 

variance that is set to yield an average signal-to-noise ratio of 

10 dB. We use the proposed algorithm to calculate �̂�𝑖,𝑛 =

𝐀𝑖
⊤𝐟𝑖,𝑛 as an LS estimate of 𝐡𝑖 at each node 𝑖. We use the 

Metropolis weights [3], [33] for 𝐂 such that 

𝑐𝑖,𝑗 = 1 max(|𝒩𝑖|, |𝒩𝑗|)⁄  

where |𝒩𝑖| denotes the cardinality of 𝒩𝑖, i.e., the degree of 

node 𝑖. We also set the regularization parameter 𝛿 to 10−3. 

In Figs. 2 and 3, we plot the misalignment, defined as 

∑ ‖�̂�𝑖,𝑛 − 𝐡𝑖‖
2𝑁

𝑖=1

∑ ‖𝐡𝑖‖
2𝑁

𝑖=1

, 

and the relative misalignment, defined as 

‖[�̂�1,𝑛
⊤ , … , �̂�𝑁,𝑛

⊤ ]
⊤

− �̂�‖
2

‖�̂�‖
2

⁄ , 

against 𝑛, i.e., the number of iterations exercised by the 

algorithm as (5)-(6), respectively. Here, �̂� is the estimate 

achieved by the centralized solution and is given by 

�̂� = 𝐀⊤(𝐀𝐀⊤ + 𝜂𝐈𝐾)−1𝐛. 

The curves in Figs. 2 and 3 are averaged over 100 

independent trials and are given for different values of the 

step-size as well as for both cases of having 𝐛 available in 

only one node (𝐵 = 1) and in all the nodes (𝐵 = 𝑁). It is seen 

that the step-size governs a trade-off between convergence 

speed and accuracy of the algorithm. Moreover, the curves 

associated with the same step-sizes almost overlay 

confirming that the value of 𝐵 does not have any significant 

effect on the performance in the considered scenario. 

4. CONCLUSION 

We developed a fully-distributed algorithm for solving the 

regularized linear least-squares problem over a sensor 

network in a model-distributed way. To this end, we 

formulated a dual distributed convex optimization problem 

and utilized the diffusion strategy for its iterative solution. 

We evaluated the performance of the proposed algorithm 

through theoretical analysis and simulation examples. 

The proposed algorithm is applicable to batch processing. 

However, extensions to handle streaming data and perform 

online learning as well as efforts to create resilience against 

node or link failure are underway. 

 

 

Fig. 1. Topology of the considered sensor network. 

 

 
 

 

 

Fig. 2. Misalignment for different values of the step-size when one or all 

nodes have access to 𝐛. 

 

 
 

 

 

Fig. 3. Relative misalignment for different values of the step-size when 

one or all nodes have access to 𝐛. 
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