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ABSTRACT

We develop a greedy algorithm for the basis-pursuit problem. The
algorithm is empirically found to provide the same solution as con-
vex optimization based solvers. The method uses only a subset of
the optimization variables in each iteration and iterates until an opti-
mality condition is satisfied. In simulations, the algorithm converges
faster than standard methods when the number of measurements is
small and the number of variables large.

Index Terms— Convex optimization, basis-pursuit, greedy al-
gorithms.

1. INTRODUCTION

Convex optimization based methods are efficient for finding sparse
solutions to underdetermined linear systems of equations. This has
received much attention [1–4] and has several applications in signal
processing [5–9]. One convex method for finding sparse representa-
tions is basis-pursuit [10] (or l1-minimization) which finds a sparse
solution as

x̂BP = min ||x||1, (1)
s.t. y = Ax

where A ∈ Rm×n is the dictionary, y ∈ Rm is the data/observations
and x ∈ Rn is the optimization variable. Typically m� n.

1.1. Prior work

Many efficient methods have been constructed to solve (1) and re-
lated noisy problems [11–16]. Methods have also been developed
for large scale problems [17–20] using specialized and distributed
optimization methods. Another approach to increasing the speed is
to start with the full set of variables and then gradually eliminate
variables based on screening principles [21, 22].

While solvers for (1) are efficient, they are often slower than
greedy search methods [23–26] which in a greedy manner solve the
problem

min ||y −Ax||2, s.t. ||x||0 ≤ K,

where the sparsity ||x||0 is assumed to be known.
To develop fast methods for efficiently finding sparse approxi-

mations, it is desirable to combine the effectiveness of convex opti-
mization with the speed of greedy algorithms.

This work was partially supported by the Swedish Research Council un-
der contract 621-2011-5847.

1.2. Our contribution

By using that the basis-pursuit solution is at most m-sparse [4] we
construct an iterative algorithm, GL1, which performs basis-pursuit
(1) in a greedy fashion using only m variables in each iteration. The
algorithm replaces vectors in an active set for vectors which lower
the l1-norm of the solution. This is done until no replacement low-
ers the l1-norm or an optimality condition is met. If the optimality
condition is satisfied, then the algorithm recovers the basis-pursuit
solution. Even though we were not able to prove convergence, the al-
gorithm has been found to empirically converge to the basis-pursuit
solution in all problem realizations.

1.3. Notation

We denote the active set by I = {i1, i2, . . . , im} ⊂ [n] =
{1, 2, . . . , n} and use |J | to denote the number of elements in a
set J . We set AI = [ai1 ,ai2 , . . . ,aim ], A = A[n] and use xI to
denote the vector consisting of the elements of x with indices in I .
The support set of a vector x is denoted by supp(x) = {i|xi 6= 0}
and the l0-norm is the size of the support set, i.e. ||x||0 = |supp(x)|.
We use ◦ to denote the Hadamard (elementwise) product of two vec-
tors and assume that A has full rank and column vectors of unit
l2-norm.

2. THE GEOMETRY OF BASIS PURSUIT

Given an at most m-sparse vector x such that supp(x) = J , |J | ≤
m and AJxJ = y, we can always enlarge the set J to a set I such
that J ⊂ I , |I| = m and AI is full rank (since A is full rank).
Thus xI = A−1

I y. Since the basis-pursuit solution has at most m
non-zero components, this means that (1) is equivalent to

I = arg min
|I′|=m

||A−1
I′ y||1, s.t. AI′ is invertible (2)

(x̂BP )I = A−1
I y, (x̂BP )Ic = 0.

We find that (2) is an exhaustive search over all subsets I ⊂ [n] of
size |I| = m. However, due to the geometry of the basis-pursuit
problem, many subsets can be eliminated from the search.

Let C(I, s) denote the convex cone

C(I, s) = {AIr, r ∈ R|I|, risi ≥ 0 ∀i ∈ I}

of A, where |I| ≤ m and s = (s1, s2, . . . , s|I|) with si = ±1 for
1 ≤ i ≤ m. We say that a cone C(I, s) is minimal (in A) if there is
no j /∈ I such that aj = AIx

′
I and sign(x′I) = ±s. An important

property of basis-pursuit is that the solution is always contained in a
minimal cone. We formulate this as a proposition.
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Fig. 1. The cone C({1, 2}, (1, 1)>) is not minimal since it contains
a3. Basis-pursuit gives a solution with support set {1, 3} since it is
the only minimal cone containing y.

Proposition 1. The support set of x̂BP is contained in a minimal
cone C(I, s), where supp(x̂BP ) = J ⊂ I and sign(x̂jk ) = sk for
k = 1, 2, . . . , |J |.

The proof is given in the Appendix. An illustration in two di-
mensions is given in Figure 1. In two dimensions the basis-pursuit
solution is given by the unique minimal cone. Note that the mini-
mal cone containing y need not be unique in general. When y has
a sparse representation, then y lies on the boundary of several mini-
mal cones. By proposition 1 it is sufficient to search over all minimal
cones in (2).

If basis-pursuit recovers an m-sparse vector x from measure-
ments Ax, then basis-pursuit recovers any other vector x′ with
supp(x′) = supp(x) and sign(x′J) = sign(xJ) [27], i.e. (1) and
(2) gives a solution with supp(x̂BP ) = I and sign((x̂BP )I) = s
for all y in the interior of C(I, s).

3. GREEDY L1-MINIMIZATION

Since basis-pursuit gives a solution with the same support set and
sign-pattern for all measurements inside the cone of the basis-pursuit
solution, we cannot interchange a vector in the support set for a
vector in the complement to lower the l1-norm. This can be veri-
fied without explicitly computing the new solutions, as the following
theorem explains.

Theorem 1. Let x be an m-sparse solution to y = Ax, I =
supp(x) and s = sign(xI). Then the l1-norm of the solution
cannot be lowered by replacing the k’th column vector of AI for a
vector aj (j /∈ I) if

1 ≥ sign(skzk)(s>z), (3)

where z = A−1
I aj . Furthermore, if (3) is satisfied with strict in-

equality for all k and aj (j ∈ Ic), then |s>z| < 1 for all aj (j ∈ Ic)
and x = x̂BP .

Noting that we can write

s>z = s>A−1
I aj = h>aj

where h = (A>I )−1s, we find that if |h>aj | ≤ 1, then no column
vector in AI can be replaced by aj to lower the l1-norm. By the
theorem, if |h>aj | < 1 for all j ∈ Ic, then x = x̂BP .

3.1. The GL1 algorithm

Using (3) we construct the greedy algorithm for l1-minimization,
GL1. The algorithm starts with an initial active set I and use I to

a1 a2 a3 . . . an

GL1

|h>aj | > 1? ||x′||1 < lmin?

h y x̂ ai1 ai2 . . . aim

lmin i1 i2 . . . im

Fig. 2. Illustration of the algorithm. The algorithm reads from the
complement set and computes using the active set.

construct a certificate h. The algorithm searches for candidate vec-
tors in Ic that satisfy |h>aj | > 1. The candidate vectors are tested
(for all k such that (3) is violated) if replacing aik by the candidate
vector lowers the l1-norm, i.e. if

||x′||1 = ||A−1
I′ AI x̂||1 =

∣∣∣∣∣∣∣∣x̂ + (ek − z)
x̂k
zk

∣∣∣∣∣∣∣∣
1

< ||x̂||1, (4)

where ek denotes the k’th basis vector in the coordinate basis. This
is done until (4) is fullfilled.

The algorithm can get stuck in a local optima (of the algorithm)
if it encounters a sparse solution. If this happens, we slightly perturb
y to ensure that it lies in the interior of a cone. When the algorithm
terminates, y is restored and the estimate is computed. The GL1
algorithm can be summarized as follows.

1. Input: y,A, I .

2. Initialization: y′ = y

3. Repeat:

4. x̂ = A−1
I y′, s = sign(x̂), lmin = ||x̂||1, h = (A>I )−1s.

5. If ||x̂||0 < m: perturb y′ = y + ∆ ·AI1, go to 4.

6. For all j ∈ Ic such that |h>aj | > 1:

(a) Compute z = A−1
I aj and t = sign(s ◦ z)(s>z).

(b) For all k such that tk > 1 and |zk| > ε:

i. If ||x̂ + (ei − z) x̂i
zi
||1 < lmin:

A. I → (I ∪ {j})\{ik},
B. Ic → (Ic ∪ {ik})\{j}, go to 4.

7. If ||x̂||1 = lmin: break.

8. Output: I, x̂I = A−1
I y.

Notes on the algorithm:

• ∆, ε > 0 are small constants (e.g. 10−5).

• Usually, x̂ is not exactly sparse due to numerical errors. Then
it is better to perturb as

y′ = y + ∆ ·As,

where s = sign(x̂).
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Fig. 3. l1-norm vs. cputime for n = 8000 and m = 50.

• In implementation, matrix inverses are replaced by solving
the set of linear equations, to increase numerical accuracy and
speed.

• The runtime can be decreased by selecting the initial set I to
be the m vectors which have largest inner products |a>i y|.

• When determining if the candidate vectors can lower the l1-
norm, it is beneficial to start with the vector with largest inner
product |h>aj | and then proceed to the one with next largest
inner product.

We note that the algorithm consists of two parts, determining if
|h>aj | > 1 and if replacing a column vector with aj lowers the
l1-norm, see Figure 2. Both of these operations can be parallelized,
making the algorithm suitable for large scale problems.

4. NUMERICAL COMPARISON

To evaluate the performance of the algorithm, we compared it with
three other solvers for (1). We used the simplex method [28], l1-
magic [12] and the Iterative Reweighted Least Squares (IRLS) [29]
for l1-minimization.

For the Simplex method we reformulate (1) as

min 1>(x+ + x−),

s.t. y = A(x+ − x−)

x+,x− ≥ 0

where 1 ∈ Rn is a vector of ones and we used MATLAB’s linprog
to run the simplex algorithm. For l1-magic, (1) is refomulated as

min 1>t

s.t. y = Ax

− ti ≤ xi ≤ ti, for i = 1, 2, . . . , n

and solved using a primal-dual interior point method [12]. The IRLS
algorithm approximates the l1-norm by a weighted l2-norm which is
updated iteratively [29].

In the simulation we used n = 8000 and varied m. The
measurements were generated by drawing the elements of A from
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Fig. 4. l1-norm vs. cputime for n = 8000 and m = 100.
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Fig. 5. Mean cputime vs. m for n = 8000.

N (0, 1) and normalizing the column vectors, the vector x was
generated as a d0.25me-sparse vector with its non-zero elements
drawn from N (0, 1). Finally we calculated y = Ax. Because A is
Gaussian, x̂BP in (1) is unique (with probability 1).

Because the algorithms have different complexity per iteration,
we measure the total cputime and the l1-norm rather than the num-
ber of iterations. We were not able to access the intermediate times
and l1-norms of linprog and therefore only display the final norm
and cputime. We show the convergence in individual realizations for
m = 50 and m = 100 in Figure 3 and 4. We find that the sim-
plex method converged faster than l1-magic for m = 50, but slower
for m = 100. In both realizations, GL1 was the fastest algorithm.
In Figure 5 we show the average cputime for different values of m
averaged over 10 realizations of A and x. We see that l1-magic is
slower than the simplex method for m ≤ 80 and slower than GL1
for m ≤ 140. The simplex method was about 3 times slower than
GL1 for all values of m.

3818



5. CONCLUSION

In this paper we constructed a greedy algorithm for l1-minimization
which empirically converges to the basis-pursuit solution. The algo-
rithm interchanges column vectors in an active set until an optimality
condition is reached or the l1-norm no longer decreases. In simula-
tions, the algorithm converged faster than the simplex method, l1-
magic and IRLS when the number of measurements is small. Ques-
tions remain whether the algorithm always converges to the basis-
pursuit solution and if it can be extended to other versions of basis-
pursuit.

6. APPENDIX

Proof of proposition 1. We need to show that if the cone C(I, s)
contains a vector aj , then we can replace a column vector in AI

for aj to lower the l1-norm of the solution.
Let I ′ = (I ∪ {j})\{k} and set

y =
∑
i∈I

xiai, (5)

aj =
∑
i∈I

ziai, (6)

y = x′jaj +
∑

i∈I,i 6=k

x′iai. (7)

Without loss of generality we can assume that xi, zi, x′i ≥ 0 for all
i ∈ I ∪ {j} . By inserting (6) into (7) we find that

x′jaj +
∑

i∈I,i 6=k

x′iai = x′jzkak +
∑

i∈I,i 6=k

(x′i + x′jzi)ai

By comparing to (5) we get that when AI and AI′ are full rank, then
xk = x′jzk and xi = x′i + x′jzi for i 6= k. Using that

1 = ||aj ||2 <
∑
i∈I

|zi| · ||ai||2 = ||z||1,

where we have strong inequality because the column vectors in AI

are not parallell, we find that

||x||1 =
∑
i∈I

xi = x′jzk +
∑

i∈I,i 6=k

(x′i + x′jzi)

= x′j
∑
i∈I

zi +
∑

i∈I,i 6=k

x′i

= x′j(||z||1 − 1) + ||x′||1 > ||x′||1,

provided that x′j > 0.

Proof of Theorem 1. Assume that we cannot interchange the k’th
column vector of AI for a vector aj to get a solution with lower
l1-norm. Then all measurements in the cone C(I, s) give basis-
pursuit solutions with the same support set and sign-pattern, i.e. for
all w ∈ Rm, w ≥ 0

||w||1 ≤ ||A−1
I′ AISw||1, (8)

where S = diag(s), I ′ = (I ∪{j})\{ik} and we assumed that AI′

is invertible.
Replacing aik for aj corresponds to making a rank-1 update of

AI , i.e.

AI′ = AI + (aj − aik )e>k .

Setting z = A−1
I aj , we get that

A−1
I′ AISw =

(
A−1

I −
A−1

I (aj − aik )e>k A
−1
I

1 + e>k A
−1
I (aj − aik )

)
AISw

= Sw − (A−1
I aj − ek)e>k Sw

e>k A
−1
I aj

= Sw + (ek − z)
skwk

zk
.

So if (8) holds, then

1 ≤ min
w≥0

1>w=1

∣∣∣∣∣∣∣∣Sw + (ek − z)
skwk

zk

∣∣∣∣∣∣∣∣
1

= min
w≥0

1>w=1

wk

|zk|
+

∑
l∈I\{ik}

∣∣∣∣slwl −
zl
zk
skwk

∣∣∣∣
Using that∣∣∣∣slwl −

zl
zk
skwk

∣∣∣∣ ≥ { 0 , if zlslzksk > 0
|zl|
|zk|

wk , else ,

we find that (8) holds if

min
w≥0

1>w=1

wk

|zk|
+

∑
l∈I\{ik}

∣∣∣∣slwl −
zl
zk
skwk

∣∣∣∣ =

min
wi≥0

wk/|zk|
(
|zk|+

∑
l∈J+

|zl|
)
=1

wi

|zi|

1 +
∑
l∈J−

|zl|


=

1 +
∑

l∈J− |zl|
|zk|+

∑
l∈J+

|zl|
≥ 1, (9)

where

J+ = {l|l ∈ I\{ik}, zlslzksk > 0},
J− = {l|l ∈ I\{ik}, zlslzksk ≤ 0}.

Rewriting (9) as∑
l:zlslzksk>0

|zl| ≤ 1 +
∑

l:zlslzksk≤0

|zl|

⇔ 1 ≥
∑
l

sign(zlslzksk)|zl|

= sign(zksk)
∑
l

slzl = sign(zksk)(s>I z),

we recover the optimality condition in (3).
To show that strict inequality in (3) implies that |s>z| < 1, as-

sume that |s>z| ≥ 1, but sign(skzk)(s>z) < 1 for all k. This im-
plies that sign(skzk) = −sign(s>z) for all k. However, if all terms
skzk have the same sign, then sign(skzk) = sign(s>z), giving a
contradiction. Thus, strict inequality in (3) implies that |s>z| < 1.

We find that

s>z = s>A−1
I aj = h>aj

where h = (A>I )−1s. This gives that if |h>aj | < 1 for all j ∈
Ic, then A>I h = s and ||A>Ich||∞ < 1. The vector h is thus
the dual certificate of the basis-pursuit solution [27], giving us that
x = x̂BP .
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C. Sinan Güntürk, “Iteratively reweighted least squares min-
imization for sparse recovery,” Communications on Pure and
Applied Mathematics, vol. 63, no. 1, pp. 1–38, 2010.

3820


