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ABSTRACT

Sparse subspace clustering (SSC) is a technique to partition un-
labeled samples according to the subspaces they locate in. With
the rapid increase of data amount, efficiently downsampling a big
dataset, while at the same time keeping the structure of subspaces,
becomes an important topic for SSC. In order to reduce the compu-
tational cost while preserving clustering accuracy, a new approach
of SSC with downsampling (SSCD) is proposed in this paper. In
SSCD, the numbers of samples located in respective subspaces are
estimated utilizing the `1 norm of the sparse representation. Then
a downsampling strategy is designed to decimate samples with the
probabilities that are in reverse ratio to the amounts of samples in
respective subspaces. As a consequence, the samples in different
subspaces are expected to be balanced after the downsampling op-
eration. Theoretical analysis proves the correctness of the proposed
strategy. Numerical simulations also verify the efficiency of SSCD.

Index Terms— Downsampling, sparse subspace clustering, un-
balanced dataset, `1 minimization, atomic norm.

1. INTRODUCTION

With the increase of human being’s ability on data collection, the
scale of datasets need to be processed is expanding dramatically. Ef-
ficiently extracting the latent structure of a set of data becomes ex-
tremely important. As a consequence, unsupervised learning attracts
more and more attention in recent years. As an emerging clustering
method, sparse subspace clustering (SSC) [1–3], demonstrates its
power in motion segmentation [2], face clustering [3], handwritten
digit detection [4]. Since the latent structure of a variety of data can
be depicted as a union of subspaces, SSC possesses a wide range of
applications. SSC also has great potential for being applied on oth-
er large-scale datasets, such as network data, gene series, medical
images, etc. Due to high computational complexity, however, effi-
ciently processing large-scale datasets becomes a crucial problem.

Many works have been done to address the above problem. To
perform SSC on randomly compressed samples appears in [5] and
[6]. Because compression reduces the dimension of ambient signal
space, the computational cost on finding self-representation in SSC
can be efficiently drawn down.

Nevertheless, high cardinality of the dataset is still a tough prob-
lem in almost every step of SSC. Direct downsampling is a ready ap-
proach to reduce the overall computations. However, uniform down-
sampling may lose information of some latent subspaces, especial-
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ly when the amounts of raw samples are unbalanced among sub-
spaces, which is pervasive in practical datasets. With regard to deal-
ing with the downsampling problem on unbalanced datasets, some
works have appeared these years. In order to preserve the geomet-
ric property of 3D shapes, [7] solved the problem of downsampling
unbalanced dataset by updating the cluster representations and the
objective function iteratively. [8] proposed density-dependent down-
sampling fitting for agglomerate clustering, which were applied in
cell analysis. However, the above downsampling methods are usual-
ly based on decimating among the nearest neighbors in the sense of
Euclidean distance, which do not work in the scenario of SSC.

As far as we know, downsampling for SSC is still an open prob-
lem and there is no state-of-the-art solution. In this paper, we tackle
this problem for the first time. We expect that in the downsampled
dataset, all clusters are preserved and the sample amounts in various
clusters are approximately equal to each other. Inspired by the spirit
of importance sampling [9] in Monte Carlo simulation, we set proper
decimating probability for each sample and endow higher probabili-
ties to the samples in smaller clusters. In such way, a strategy named
sparse subspace clustering with downsampling (SSCD) is proposed.
Both theoretical analysis and numerical simulations are provided to
validate the correctness and efficiency of SSCD.

2. PRELIMINARY

2.1. Problem formulation

Let χ = {x1, · · · ,xN},xi ∈ Rn, ‖xi‖2 = 1, ∀i ∈ {1, · · · , N}
denotes a normalized dataset. This dataset can be partitioned into
L subsets, χl = {xl(1), · · · ,xl(Nl)}, where Nl denotes the num-
ber of samples in the lth subset, i.e.,

∑L
l=1Nl = N. For each

l ∈ {1, · · · , L}, the samples in χl lie in a d-dimensional subspace
Ul, where the samples are drawn independently and uniformly. Giv-
en the dataset, the problem studied in this paper is to recover all the
subspaces. It is assumed that Nls are large numbers, and all sub-
spaces are well separated, that is, subspace detection property [10]
holds. Furthermore, we consider clustering clean datasets, i.e., with-
out noise or outliers.

2.2. Sparse Subspace Clustering

SSC was first proposed in [1]. It can be roughly divided into two
steps. In the first step, the sparse representation of each sample xi is
estimated by solving an `1 minimization problem,

ĉi = argmin ‖ci‖1, s.t. xi = Xci, ci(i) = 0, (1)

where X = [x1, · · · ,xN ] ∈ Rn×N , ci ∈ RN .In the second step,
spectral clustering [11] is adopted to partition the samples into clus-
ters by processing a similarity graph G, whose adjacency matrix is
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(a) Sparse subspace clustering
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(b) Sparse subspace clustering with downsampling
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Fig. 1. An intuitive explanation of SSC and SSCD is provided by clustering 16 samples, denoted by circled numbers, into 3 subspaces,
distinguished by different colors. (a) There are two steps included in SSC. S1: sparse self-representation is estimated to discover the relation
among samples. S2: spectral clustering [11] is applied on the similarity graph to partition samples and then the structure of subspaces
are extracted. (b) SSCD is proposed to improve the performance on large-scale unbalanced datasets. D1: sparse self-representation is
estimated, where this step is exactly the same as S1 in SSC. D2: the probability of each sample to be downsampled is determined by its sparse
representation, where the circle’s area denotes the respective probability. D3: the original dataset is downsampled to produce a small and
balanced subset according to the downsampling probability of respective samples. D4: new sparse self-representation is estimated among the
balanced dataset. D5: Applying spectral clustering on the new similarity graph to find the structure of subspaces, where this step is similar to
S2 in SSC but the former is executed on a small and balanced dataset.

given by A = |Ĉ| + |Ĉ|T, where Ĉ = [ĉ1, · · · , ĉN ] ∈ RN×N

and | · | takes the elementwise absolute value. Entries of A denote
similarity between corresponding pairs of samples. An intuitive de-
scription of SSC is demonstrated in Fig.1(a).

2.3. Atomic Norm and Polytope’s Volume

Atomic norm, which is equivalent to Minkowski functional [12],
plays an essential role in connecting the sparse representation to the
sample amount.

Definition 1 ( [13]). For a bounded and symmetric atom set A =
{±a1,±a2, · · · ,±am,ai ∈ Rn, ∀i ∈ {1, 2, · · · ,m}}, where m is
an positive integer, the atomic norm of a vector x ∈ Rn is defined as

‖x‖A = inf
t
{x ∈ t · conv(A)}, (2)

where conv(A) denotes the convex hull of atoms in A.

Lemma 1 ( [10]). When strong duality holds for the linear program-
ming problem

x̂ = argmin ‖x‖1, s.t. y = Φx, (3)

it satisfies that
‖x̂‖1 = ‖y‖A, (4)

where A is composed of the columns of Φ and −Φ.

The volume of a high-dimensional random inscribed polytope is
estimated in Lemma 2.

Lemma 2 ( [14]). Assuming that B(d) is the Euclidean ball in Rd,
and AN is a random inscribed polytope with all of its N vertices

independently uniformly chosen on the boundary ofB(d), i.e., Sd−1,
one has

E {Vold(AN )} = Vold(B
(d))− (cB(d) + o(1))N−

2
d−1 , (5)

where Vold(·) denotes the d-dimensional volume and cB(d) is a con-
stant depending on d.

3. SPARSE SUBSPACE CLUSTERING WITH
DOWNSAMPLING

In order to handle the large-scale unbalanced dataset for SSC, we
propose a downsampling technique, which is visualized in Fig.1(b).
Compared with SSC in Fig.1(a), the proposed SSCD performs
subspace clustering operations (generating similarity graph, per-
forming spectral clustering, and recovering subspace structure) on
the downsampled dataset (D4, D5) rather than on the set of raw
data. We illustrate in detail the steps of SSCD in Algorithm 1.
Processing well downsampled dataset largely reduces the cluster-
ing time and preserves high subspace recovery accuracy as well.
Therefore downsampling (D1, D2, D3) plays an important role in
SSCD, which simultaneously downscales the dataset and balances
the sample amounts among all subspaces.

We first demonstrate the basic idea of downsampling. The self-
representation (D1) of SSCD is exactly the same with that of SSC
(S1), which is mainly based on the property that samples lying in
the same subspace could be mutually represented. When the sub-
space is of low dimensionality, the representation vectors are sparse.
Though the first steps in SSC and SSCD are the same, their purposes
are quite different. While SSC builds a similarity graph utilizing the
representation vectors, SSCD determines the downsampling proba-
bilities from the `1 norm of the vectors (D2). As a consequence, the
downsampled dataset is accordingly chosen (D3).
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Algorithm 1 The Procedure of SSCD

Input: A dataset matrix X ∈ Rn×N , of which the ith column
denotes a sample xi, i ∈ {1, · · · , N}; dimension of
subspace d; cardinality of the downsampled subset M .

Output: Orthonormal bases of each subspace.
Downsampling:

D1: Estimate the sparse representation for xi by
ĉi = argmin ‖ci‖1, s.t. xi = Xci, ci(i) = 0;

D2: For all i ∈ {1, · · · , N}, calculate the weight of xi

wi =
(
1− 1/‖ĉi‖d1

) d−1
2 ,

and normalize it to the downsampling probability
pi = wi/

∑N
j=1 wj ;

D3: Randomly choose M different samples from {xi}Ni=1

according to the probability {pi}Ni=1 and construct
a new dataset {x′i}Mi=1;

Sparse Subspace Clustering:
D4: Estimate the sparse representation for all x′i;
D5: Construct an M -node similarity graph G. Then apply

spectral clustering to obtain the partition and perform
Principal Component Analysis (PCA) on each cluster,
the first d components constitute an approximated
orthonormal bases of the corresponding subspace.

The core problem in the downsampling strategy is to set the
downsampling probabilities (D2). Inspired by the spirit of rare event
simulation [15], we assign the samples in smaller clusters with larg-
er weights. According to Borel’s law of large numbers [16], a good
choice is to balance the sum of downsampling probabilities among
different clusters. Notice that the subspace detection property [10]
can be preserved by properly setting the cardinality of the down-
sampled dataset M , and we assume that M � N . By setting the
probability distribution as

pi =
1

LNli

, li ∈ {1, · · · , L}, i ∈ {1, · · · , N}, (6)

where li indexes the subspace xi lies in, one can expect that in the
downsampled dataset the amounts of samples in different subspaces
are balanced. Therefore, the problem of setting the downsampling
probabilities turns to estimating the amount of samples lying in re-
spective subspaces. Based on Proposition 1, by setting the weights
as in D2 of Algorithm 1, we draw the downsampling probability
approximating (6). In such way, the downsampled dataset is approx-
imately subspace-balanced.

Proposition 1. In the scenario of SSC described in section 2.2, the
amount of samples lying in the same subspace with xi is approxi-

mately in inverse proportion to wi ,
(
1− 1/‖ĉi‖d1

) d−1
2 , where ĉi

is the optimal solution as denoted in (1).

4. PROOF OF PROPOSITION 1

According to the self-representation step in SSC, one may define
Al

i = {±xil(1), · · · ,±xil(Nl)}\{±xi}, i ∈ {1, · · · , N}, l ∈
{1, · · · , L},xi ∈ Ul, which is a bounded and symmetric atomic set
generated by the samples in the lth subspace except xi. Utilizing
Lemma 1, it can be readily accepted that

‖ĉi‖1 = ‖xi‖Al
i
, (7)

where ĉi is given in (1). The assumption that the subspaces are well
separated is adopted to derive (7). Since the samples are normalized,
i.e. ‖xi‖2 = 1, one may utilize 1/‖xi‖Al

i
to denote the Euclidean

length of a section of xi that is contained in the polytope conv(Al
i).

Based on geometric intuition, we come up with Lemma 3.

Lemma 3. For a deterministic polytope conv(A) with all vertices
fixed on the boundary of Sd−1 and a random variable x ∈ Rd sat-
isfies a uniform distribution on Sd−1, one has

E
{

1

‖x‖dA

}
=

Vold(conv(A))
Vold(B(d))

, (8)

where B(d) = {x ∈ Rd|‖x‖2 ≤ 1}.

Proof. The ratio of volume element can be calculated as

dVold(conv(A))
dVold(B(d))

dµ =
1

‖x‖dA
dµ. (9)

where µ denotes a Haar measure defined on Sd−1 [17]. In conse-
quence, one has

E
{

1

‖x‖dA

}
=

∫
Sd−1

1

‖x‖dA
dµ =

Vold(conv(A))
Vold(B(d))

.

By applying Lemma 3 in the scenario of SSC, it comes directly
that

E

 1

‖xi‖dAl
i

∣∣∣∣Al
i

 =
Vold(conv(Al

i))

Vold(B(d))
. (10)

Considering the randomness of samples on Ul, one may take the
expectation of both sides of (10) with respect to Al

i and get

E

 1

‖xi‖dAl
i

 =
E
{
Vold(conv(Al

i))
}

Vold(B(d))
. (11)

Applying Lemma 2 on the volume of high-dimensional random
polytope in (11), one may readily arrive at Proposition 2.

Proposition 2. The number of samples in the lth subspace, Nl, can
be approximated by

N̂l = Cd

(
1− E

{
1

‖ĉi‖d1

∣∣∣∣xi ∈ Ul

})− d−1
2

, (12)

where Cd = 1
2

(
Vold(B

(d))
c
B(d)+o(1)

)− d−1
2

is a constant only depending on

d and cB(d) is the same as in Lemma 2.

Proof. In the scenario of SSC, 2Nl − 2 samples in Ul construct an
atomic set of Al

i to represent xi, where half atoms in the atomic set
follow uniform distribution and the rest ones are determined accord-
ingly to satisfy symmetry. By relaxing the dependence of the two
halves of atoms, one may approximate Al

i by Ãl
i, whose 2Nl − 2

atoms are drawn independently in Sd−1 by uniform distribution.
Adopting Lemma 3, as a consequence, one has

E
{
Vold(conv(Al

i))
}
≈ E

{
Vold(conv(Ãl

i))
}

=Vold(B
(d))− (cB(d) + o(1))(2Nl − 2)−

2
d−1 . (13)
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Utilizing (7) and (13) in (11), one may readily arrive at

E
{

1

‖ĉi‖d1

∣∣∣∣xi ∈ Ul

}
≈ 1− (cB(d) + o(1))(2Nl − 2)−

2
d−1

Vold(B(d))
,

(14)
which is finally rewritten to (12) to provide an estimate of Nl by
utilizing `1 norm of sparse representation coefficients.

Because it is assumed that all subspaces share the same dimen-
sion, the constant Cd in (12) can be eliminated when estimating the
ratio of sample amounts in various subspaces. Furthermore, the ran-
dom volume of hyper-dimensional inscribed polytope is concentrat-
ed around its expectation with high probability, which is a main re-
sult in [18]. In consequence, we approximate (12) by a feasible form

Ñl = Cd

(
1− 1

‖ĉi‖d1

)− d−1
2

, (15)

and finally prove Proposition 1.

5. NUMERICAL RESULTS

Two propositions are tested in the first experiment. In order to ver-
ify Proposition 1, three 5-dimensional subspaces are generated in
100-dimensional ambient space. 500, 100, and 30 samples are in-
dependently uniformly chosen in respective subspaces and then nor-
malized. The weight wi associated with each sample is plotted in the
left subplot of Fig.2. To testify Proposition 2, a d-dimensional sub-
space is generated in 50-dimensional ambient space and Nl samples
are independently uniformly chosen from this subspace. The num-
ber d and Nl vary from 5 to 10, and from 15 to 215, respectively.
The average of Ñl/Cd (15) in 150 random trials are plotted in the
right subplot of Fig. 2. One may easily read from Fig.2 that the sam-
ple amounts in a subspace are in good linearity with its estimate, i.e.,
the right hand side of (12), which verifies Proposition 2. Meanwhile,
the scatterplot generated from one trial demonstrates that estimating
the sample amount in the same subspace by 1/wi in Proposition 1 is
rather good, especially when the sample amount is large.
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Fig. 2. The left subplot demonstrates wi in one trial, where the solid
lines denote the means ofwi in respective clusters. The right subplot
depicts that the average of Ñl/Cd is in good linearity with Nl.

In the second experiment, the proposed SSCD is compared with
SSC with uniformly downsampling (SSCU). The experiment setting
is the same with that in the first experiment of verifying Proposition
1. The performance of SSCD is tested by varying the downsampling
rate M/N from 1% to 30%. 100 trials are taken and the result-
s are demonstrated in Fig.3, where subspace recovery accuracy is
measured with the average of subspace affinities [10] between the
estimated subspaces and the original ones. One may read from Fig.3

that in this scenario decimating only 10% samples of the original
dataset are enough for SSCD to recover the structures of all three
subspaces, while for SSCU at least 30% samples are required. The
gap between the dashed lines in the right subplot of Fig.3 demon-
strates the advantage of SSCD over SSCU in processing time when
at least 99% subspace recovery accuracy is achieved.
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Fig. 3. The left subplot compares the recovery accuracy of SSC,
SSCD, and SSCU. The right subplot displays the processing time of
these three methods. In our experiment, `1 homotopy method [19] is
applied in (S1, D1, D4) steps, random walk spectral clustering with
eigengap heuristic [11] is performed in (S2) and (D5) steps.

In order to illustrate the efficiency of the downsampling step in
SSCD, the similarity graphs in one trial are displayed in Fig.4. The
color of pixels represents the similarity between samples, i.e., the en-
tries of A, where the blue color represents zero. The yellow squares
in each subplot show the pattern of three clusters. From Fig.4, one
may read that the similarity matrix generated in SSC is large and s-
parse. In consequence, directly performing spectral clustering and
subspace recovery on it consumes much time. Furthermore, the s-
parsely connected components are usually difficult to cluster [20].
Uniformly downsampling can solve this problem, however, it may
lose small clusters. As stated in the text, the proposed SSCD is
free of the above problems by properly downsampling and produc-
ing dense and balanced clusters.
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Fig. 4. The similarity matrices generated in SSC (left), SSCU (mid-
dle), and SSCD (right). Both downsampled dataset are of cardinal-
ity 45. For ease of understanding, we use yellow squares to label
the edges of diagonal blocks and enlarge the area of each nonzero
entries in the left subplot by a factor of 9.

6. CONCLUSION AND FUTURE WORK

We propose a downsampling strategy for sparse subspace clustering
for the first time, and testify its efficiency with numerical experi-
ments based on synthetic data. This proposed downsampling strat-
egy, which is built on high-dimensional geometry and importance
sampling, is verified to be capable of balancing the sizes of clusters,
reducing computational cost, and recovering the structure of sub-
spaces with high accuracy. Possible future works include studying
the downsampling strategy for noisy dataset and designing general
downsampling strategy for various scenarios.
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