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ABSTRACT
In this paper, we propose a new algorithm to speed-up the
convergence of accelerated proximal gradient (APG) meth-
ods. In order to minimize a convex function f(x), our algo-
rithm introduces a simple line search step after each proximal
gradient step in APG so that a biconvex function f(θx) is
minimized over scalar variable θ > 0 while fixing variable
x. We propose two new ways of constructing the auxiliary
variables in APG based on the intermediate solutions of the
proximal gradient and the line search steps. We prove that at
arbitrary iteration step t(t ≥ 1), our algorithm can achieve a
smaller upper-bound for the gap between the current and op-
timal objective values than those in the traditional APG meth-
ods such as FISTA [1], making it converge faster in practice.
We apply our algorithm to many important convex optimiza-
tion problems such as sparse linear regression. Our experi-
mental results demonstrate that our algorithm converges faster
than APG, even comparable to some sophisticated solvers.

1. INTRODUCTION

As a general convex minimization algorithm, accelerated
proximal gradient (APG) has been increasingly attracting
attention, and it has been widely used in many different re-
search areas such as signal processing [2], computer vision
[3], and data mining [4]. In general, APG solves the following
problem:

min
x∈X

f(x) = f1(x) + f2(x) (1)

where X ⊆ Rn denotes the closed and convex feasible set for
variable x ∈ Rn, and f(x) : Rn → R is a convex function,
which consists of a convex and differentiable function f1 with
Lipschitz constant L ≥ 0 and a convex but non-differentiable
function f2.

In APG, proximal gradient is used to update variables
based on the proximity operator [2], denoted as prox. The
basic idea of proximity operator is to approximate a convex
function using a strongly convex function whose minimizer in
the feasible set is returned as an approximate solution for the
original minimization problem. At the optimal solution, the
solution returned by proximity operator is identical to the op-
timal. Taking FISTA [1] as an example, we can see that APG
generates an auxiliary variable for proximal gradient so that

the convergence rate of APG for general convex optimization
is O( 1

T 2 ), which was proved to be optimal for first-order gra-
dient descent methods [5].

Generally speaking, the computational bottleneck in APG
comes from the following two aspects:

(i) Computation of proximal gradients. Evaluating the
gradients of f1 could be time-consuming, because the evalu-
ation is over the entire dataset. This situation is more promi-
nent for high dimensional and large-scale datasets. Also, pro-
jecting a point into the feasible set may be difficult. Many re-
cent approaches have attempted to reduce this computational
complexity, such as inexact proximal gradient methods [6],
stochastic proximal gradient methods [7, 8], and distributed
proximal gradient methods [9].

(ii) Number of iterations. In order to minimize the num-
ber of iterations, intuitively in each iteration the resulting
function value should be as close to the global minimum as
possible. One way to achieve this is to optimize the step size
in the proximal gradient, which unfortunately may be very
difficult for many convex functions. Instead, in practice line
search [1, 10, 11, 12] is widely used to estimate the step size
so that the function value is decreasing. In general, the line
search in the proximal gradient step has to evaluate the func-
tion repeatedly by changing the step size so that numerically
the learned step size is close to the optimal. Alternatively
many types of restarting schemes [10, 13, 14] have been uti-
lized to reduce the number of iterations empirically. Here
additional restarting conditions are established and evaluated
periodically. If such conditions are satisfied, the algorithm is
re-initialized using current solutions.

1.1. Our Contribution

In this paper, we focus on reducing the number of iterations,
and simply assume that the non-differentiable function f2 is
simple [13] for performing proximal gradient efficiently. One
instance of a simple function is `1 norm penalization that is
often used in sparse regression.

Our first contribution is to propose a new general algo-
rithm, Rapidly Accelerated Proximal Gradient (RAPID), to
speed up the empirical convergence of APG, where an addi-
tional simple line search step is introduced after the proximal
gradient step. Fig. 1(a) illustrates the basic idea of our al-
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Fig. 1. (a) Illustration of the basic idea of our algorithm for improving convergence of APG in 2D, where o denotes the origin of the 2D coordinate system,
v, x, θx, and x∗ denote the solutions at the initial point, after the proximal gradient step, after the line search step, and at the minimum, respectively, and the
directed lines denote the updating directions. (b) Illustration of the differences between APG and our RAPID in terms of constructing the auxiliary variable
vt in iteration t, where directed lines denote the generating orders of intermediate solutions, and the dotted lines denote the directions of the auxiliary variable
starting at the solution in iteration t− 1. This figure is best viewed in color.

gorithm in 2D. After the proximal gradient step, another line
search is applied along the direction of the current solution
x. Ideally, we would like to find a scalar θ > 0 so that
θ = argmin{θ̂|θ̂x∈X} f(θ̂x). Therefore, we can guarantee
f(θx) ≤ f(x). The positiveness of θ guarantees that both
x and θx point to the same direction so that the information
from gradient descent can be preserved. Geometrically, this
additional line search tries to push x towards the optimal so-
lution, making the distance between the current and optimal
solutions smaller. Also, we propose two ways of constructing
the auxiliary variables based on the intermediate solutions in
the previous and current iterations, as illustrated in Fig. 1(b).

Our second contribution is that theoretically we prove that
at an arbitrary iteration t, the upper bound of the objective
error f(θtxt)−minx∈X f(x) in our algorithm is consistently
smaller than that of f(xt)−minx∈X f(x) in traditional APG
methods such as FISTA. This result implies that in order to
achieve the same precision, the number of iterations in our
algorithm is most likely no more than that in APG. In other
words, empirically our algorithm tends to converge faster than
APG.

We apply our general algorithm to several interesting con-
vex optimization problems, i.e. LASSO [15], group LASSO
[16], and least square loss with trace norm [17, 18], and com-
pare our performance with APG and SLEP [19]. Our experi-
mental results demonstrate present empirical evidence of our
theoretical results on faster convergence.

This paper is organized as follows. In Section 2, we ex-
plain the details of our RAPID algorithm. In Section 3 we
prove our theorems on the convergence rate of our algorithm.
We show our experimental results and comparison in Section
4, and conclude the paper in Section 5.

2. ALGORITHMS

In general, there are two basic steps in each iteration in APG
algorithms: (1) performing proximal gradients, and (2) con-
structing auxiliary variables. Proximal gradient is defined as

Algorithm 1: RAPID: Rapidly Accelerated Proximal
Gradient Algorithms

Input : f(x), λx, λθ
Output: x

x0 ← 0; v0 ← x0; θ0 ← 1; η0 ← 1;
for t = 1, · · · , T do

xt ← proxλxf2
(vt−1 − γtOf1(vt−1));

θt ← argmin{θ|θxt∈X}

{
f(θxt) +

1
2λθ
‖θxt − xt‖22

}
;

ηt =

√
η4t−1+4η2t−1−η

2
t−1

2
;

Update vt using either Eq. 3 or Eq. 4;
end
return θTxT ;

applying the proximity operator to a gradient descent step.
Alg. 1 shows our RAPID algorithm, where in each itera-

tion t(t ≥ 1) four steps are involved:

Step 1: A proximal gradient step using the auxiliary variable
vt−1, same as APG.

Step 2: A simple line search step along the direction of the
current solution xt. Actually the definition of θt in
Alg. 1 is equivalent to the following equation:

x∗t = proxλθf (xt) ∈ {x̃t|∃θ, x̃t = θxt ∈ X}. (2)

In other words, this line search step essentially adapts
the current solution xt to a better one in a very efficient
way (e.g. with close-form solutions).

Step 3: Updating parameter ηt used for constructing the new
auxiliary variable vt, same as APG. Note that any num-
ber sequence {ηt} can be used here as long as the se-
quence satisfies ∀t ≤ 1, 1−ηt+1

η2t+1
≤ 1

η2t
.

Step 4: Updating the new auxiliary variable vt using one of
the following two equations:

vt = ηt(1−η−1t−1)θt−1xt−1+ηtη
−1
t−1xt+(1−ηt)θtxt,

(3)
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vt = ηt(1− η−1t−1)θt−1xt−1 + (1− ηt + ηtη
−1
t−1)θtxt.

(4)
In this way, our algorithm guarantees its convergence,
but with different convergence rate. See our analysis in
Section 3 and comparison results in Section 4.

Fig. 1(b) illustrates the differences in constructing the
auxiliary variable between APG and our RAPID. In APG,
the auxiliary variable vt is constructed along the gradient
of xt − xt−1 starting from xt. Similarly, in RAPID we
would like to construct the auxiliary variable vt using θtxt
and the other intermediate solutions in the previous and cur-
rent iterations (i.e. xt−1, θt−1xt−1, and xt). It turns out
that all possible combinations of intermediate solutions for
constructing vt end up with Eq. 3, with guaranteed better
upper bounds over f(θtxt) − minx∈X f(x) than those over
f(xt) − minx∈X f(x) in APG in arbitrary iteration t (see
Theorem 1 in Section 3). Under mild conditions, we can
adopt the same way as APG to construct vt using the final
solutions in the previous and current iterations, i.e. θt−1xt−1
and θtxt, which is exactly Eq. 4. However, for this setting
we lose the theoretical guarantee of better upper bounds than
APG, as shown in Theorem 2 in Section 3. Nevertheless, sur-
prisingly in our experiments RAPID with Eq. 4 outperforms
than that with Eq. 3 with significant improvement in terms of
empirical convergence (see Section 4 for details).

3. ANALYSIS

In this section, we present our theoretical results on the con-
vergence rate of our RAPID algorithm in Theorem 1 and 2,
which is clearly better than those of conventional APG meth-
ods such as FISTA, leading to faster convergence in practice.
Please refer to [20] for the details of our proofs.

Lemma 1 (Sandwich [21]). Let f̃ be the linear approxima-
tion of f in v w.r.t. f1, i.e. f̃(w;v) = f1(v) + 〈Of(v),w −
v〉 + f2(w), where 〈·, ·〉 denotes the inner product between
two vectors. Then

f(w) ≤ f̃(w;v)+
L

2
‖w−v‖22 ≤ f(w)+

L

2
‖w−v‖22. (5)

Lemma 2 (3-Point Property [21]). If ŵ = argminw∈Rd
1
2‖w−

w0‖22 + φ(w), then for any w ∈ Rd,

φ(ŵ)+
1

2
‖ŵ−w0‖22 ≤ φ(w)+

1

2
‖w−w0‖22−

1

2
‖w−ŵ‖22.

(6)

Lemma 3. In Alg. 1, at an arbitrary iteration t, we have

f(θtxt) ≤ f(xt)−
1

2λθ
‖xt − θtxt‖22. (7)

Theorem 1. Let x∗ = argminx∈X f(x) and λθ = 1
L . If Alg.

1 updates vt using Eq. 3, in iteration T (∀T ≥ 1) in Alg. 1,

we have

f(θTxT )−f(x∗) ≤
2L

(T + 1)2

[
‖x∗ − z0‖22 −

T∑
t=1

‖xt − θtxt‖22
η2t−1

]
,

(8)
where z0 is a constant.

Theorem 2. Let x∗ = argminx∈X f(x) and λθ = 1
L . If

Alg. 1 updates vt using Eq. 4, and suppose in any iteration
t(t ≥ 1), v∗t = (1 − ηt)θtxt + ηtx

∗ and ‖v∗t − xt+1‖22 =
‖v∗t − θt+1xt+1‖22 + ξt+1, then in iteration T (∀T ≥ 1) we
have

f(θTxT )− f(x∗) (9)

≤ 2L

(T + 1)2

[
‖x∗ − z0‖22 −

T∑
t=1

(
‖xt − θtxt‖22

η2t−1
+ ξt

)]
,

where z0 is a constant.

4. EXPERIMENTS

In this section, we explain how to apply our algorithm to
solve sparse linear regression (i.e. LASSO, group LASSO,
and least square fitting with trace-norm). We also compare
our empirical performance with APG and an existing solver
SLEP [19].

4.1. Problem Setting

We denote A = {ai}i=1,··· ,N ∈ RN×d as a data ma-
trix, y = {yi}i=1,··· ,N ∈ RN as a regression target vec-
tor, Y = {yj}j=1,··· ,M ∈ RN×M as a matrix consist-
ing of M regression tasks, x ∈ Rd as a linear regressor,
X = {xj}j=1,··· ,M ∈ Rd×M as a matrix consisting of M
linear regressors, and λ ≥ 0 as a regularization parameter. As
follows, for each method we list its loss function, regularizer,
proximity operation, and optimal line search scalar θ, which
are used in Alg. 1.

(i) Loss functions (i.e. f1, convex and differentiable).
Least square loss is used in all the methods, i.e. , 1

2‖Ax−y‖22
for LASSO and group LASSO, and 1

2

∑M
j=1 ‖Axj−yj‖22 for

trace-norm.
(ii) Regularizers (i.e. f2, convex but non-differentiable).

The corresponding regularizers in LASSO, group LASSO,
and trace-norm are λ‖x‖1, λ

∑
g∈G ‖x(g)‖2, and λ‖X‖∗ =

trace
(√

XTX
)
=
∑min(d,M)
j=1 σj , respectively. Here, ‖ · ‖1

and ‖ · ‖2 denote `1 and `2 norms, (·)T denotes the matrix
transpose operator, g ∈ G denotes a group index, x(g) denotes
a group of variables without overlaps, and σj denotes the jth

singular value for matrix
√
XTX.

(iii) Proximity operators. Based on their corresponding
regularizers, the proximity operators can be calculated effi-
ciently as follows, where u = {uj} and U = {uj} are de-
noted as the variable vector and matrix after the gradient de-
scent:
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Fig. 2. Empirical convergence rate comparison using synthetic data on (a) LASSO, (b) group LASSO, and (c) trace-norm. This figure is best viewed in color.

• LASSO:

proxλf‖·‖1
(uj) = sign(uj) ·max {0, |uj | − λ} ,

(10)
where sign(uj) = 1 if uj ≥ 0, otherwise, sign(uj) =
−1, and |uj | denotes its absolute value.

• Group LASSO:

proxλf‖·‖2
(u

(g)
j ) =

u
(g)
j

‖u(g)‖2
·max

{
0, ‖u(g)‖2 − λ

}
.

(11)

• Trace norm: Letting U = P·diag(σ)·QT , where P ∈
Rd×n and Q ∈ RM×n are two matrices, σ is a vector
with n singular values of U ∈ Rd×M , and diag(·)
denotes a diagonal matrix with the values along the di-
agonal. Then we have

proxλf‖·‖∗ (U) = P · proxλf‖·‖1 (σ) ·Q
T . (12)

Here proxλf‖·‖1
(·) is an entry-wise operator.

(iv) Optimal line search scalar θ. For each problem, we
re-define θ as θt = argminθ {f(θxt)} in arbitrary iteration t
by setting λθ = +∞ in Alg. 1, because there exists a close-
form solution in our cases. Letting ∀t, ∂f(θxt)∂θ = 0, we have

θt =
yTAxt−f2(xt)
‖Axt‖22

for LASSO or group LASSO, and θt =∑
j y

T
j A(xj)t−λ‖Xt‖∗∑
j ‖A(xj)t‖22

for trace-norm.

4.2. Results

We test and compare our RAPID algorithm on some synthetic
data. For each sparse linear regression method, we generate
a 103 sample data matrix with 103 dimensions per sample as
variable A, and its associated regression target vector (ma-
trix) y (Y) randomly by normal distributions. The APG and
RAPID methods are modified based on the code in [14]1, and

1The code can be downloaded from https://github.com/
bodono/apg. We do not use the re-starting scheme in the code.

SLEP [19] is a widely used sparse learning toolbox for our
comparison. Here, RAPID-I and RAPID-II denote our algo-
rithm using Eq. 3 and Eq. 4, respectively. SLEP-0, SLEP-1,
and SLEP-2 are the three settings used in SLEP with different
parameters mFlag and lF lag (i.e. (mFlag, lFlag)=SLEP-#:
(0,0)=0, (0,1)=1, (1,1)=2). Please refer to the toolbox manual
for more details. For trace-norm, SLEP actually implements
the APG algorithm as its solver.

Fig. 2 shows our comparison results. In Fig. 2(a), the
performances of SLEP-0 and SLEP-1 are identical, and thus
there is only one curve (i.e. the brown one) for both meth-
ods. Clearly, our RAPID-II algorithm works best in these
three cases in terms of empirical convergence rate. Since we
can only guarantee that the upper bound of the difference be-
tween the current and optimal objective values in each itera-
tion in RAPID is no bigger than that in APG (see Section 3),
sometimes the actual objective value using RAPID may be
larger than that using APG, as shown in Fig. 2(a).

5. CONCLUSION

In this paper, we propose an improved APG algorithm,
namely, Rapidly Accelerated Proximal Gradient (RAPID), to
speed up the convergence of conventional APG algorithms.
Our first idea is to introduce a new line search step after the
proximal gradient step in APG to push the current solution
xt towards a new one θxt ∈ X (θ > 0) so that f(θxt) is
minimized over scalar θ. Our second idea is to propose two
different ways of constructing the auxiliary variable in APG
using the intermediate solutions in the previous and current
iterations. In this way, we can prove that our algorithm is
guaranteed to converge with a smaller upper bound of the
gap between the current and optimal objective values than
those in APG algorithms. We demonstrate our algorithm with
the application of sparse linear regression. In summary, our
RAPID converges faster than APG, in general, and for some
problems RAPID based algorithms can be comparable with
the sophisticated existing solvers.
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