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ABSTRACT
We study the problem of sequentially recovering a sparse vec-
tor xt and a vector from a low-dimensional subspace `t from
knowledge of their sum mt = xt + `t. If the primary goal
is to recover the low-dimensional subspace where the `t’s lie,
then the problem is one of online or recursive robust principal
components analysis (PCA). To the best of our knowledge,
this is the first correctness result for this problem. We prove
that if a good estimate of the initial subspace is available;
the `t’s obey certain denseness and slow subspace change
assumptions; and the support of xt changes either at every
frame or at least every so often, then with high probability, the
support of xt will be recovered exactly, and the error made
in estimating xt and `t will be small. An example where
this problem occurs is in separating a sparse foreground and a
slowly changing dense background from surveillance videos.

1. INTRODUCTION

Principal Components Analysis (PCA) is a widely used tool
for dimension reduction. As is well known, the standard PCA
approach (computing SVD of the data matrix) is highly sensi-
tive to outliers. A common way to model outliers is as sparse
vectors [2]. In seminal papers Candès et. al. and Chan-
drasekaran et. al. introduced the Principal Components Pur-
suit (PCP) program and proved its robustness to sparse out-
liers [3], [4]. Later work by Hsu et. al. [5] improved the
result of [4]. Since then, there has been much later work on
obtaining guarantees for robust PCA, e.g. [6, 7, 8, 9] and
many others, but all of it has been for batch methods.

In this work we consider an online or recursive version of
the robust PCA problem where we seek to separate vectors
into low dimensional and sparse components as they arrive,
using the previous estimates, rather than re-solving the entire
problem at each time t. An application where this type of
problem is useful is in video analysis [10]. Imagine a video
sequence that has a distinct background and foreground. An
example might be a surveillance camera where a person walks
across the scene. If the background does not change very
much, and the foreground is sparse (both practical assump-
tions), then separating the background and foreground can be

Longer version of this paper is under submission to IEEE Trans. Info.
Th. [1]. This work was supported by NSF grant CCF-1117125.

viewed as a robust PCA problem. In this and many other
applications, e.g. sensor networks based detection of out-
lier events such as forest fires, network anomaly detection, or
other streaming video analytics problems, an online solution
is desirable.

Contributions. To the best of our knowledge, this is
among the first works that provides a correctness result for
an online (recursive) algorithm for sparse plus low-rank ma-
trix recovery. We study the ReProCS algorithm introduced
in [11]. As shown in [12], with practical heuristics used to
set its parameters, ReProCS has significantly improved recov-
ery performance compared to other recursive and even batch
methods for many simulated and real video datasets.

We show that as long as algorithm parameters are set ap-
propriately (which requires knowledge of subspace change
model parameters), a good-enough estimate of the initial sub-
space is available, slow subspace change holds, the subspaces
are dense enough, and there is a certain amount of support
change at least every so often, then the support can be exactly
recovered with high probability; the sparse and low-rank ma-
trix columns can be recovered with bounded and small error;
and the subspace recovery error decays to a small value within
a short delay of a subspace change.

Online algorithms are needed for real-time applications;
and even for offline applications, they are faster and need less
storage compared to batch techniques. Moreover, online ap-
proaches can provide a natural way to exploit temporal de-
pendencies in the dataset. In our case, we show that ReProCS
uses slow subspace change to allow for significantly more cor-
related support sets of the sparse vectors than do the various
results for PCP [3, 4, 5]. Of course this advantage comes at
a cost. We need a tighter bound on the rank-sparsity product
compared to [3] and some extra but practically valid assump-
tions (see Sec 6).

Finally, we also develop new proof techniques to prove
our results. A brief discussion is provided in Sec 5.

Partial results have been provided for online sparse plus
low-rank matrix recovery in [11]; and also in later work by
Feng et. al. [13]; however, all require an assumption on inter-
mediate algorithm estimates. We discuss these and [14, 15] in
Sec 6. There is some more recent work on online robust PCA
algorithms and their experimental evaluation, e.g. [16].

Notation. We use lowercase bold letters for vectors, cap-
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ital bold letters for matrices, and calligraphic capital letters
for sets. We use x′ for the transpose of x. The 2-norm of
a vector and the induced 2-norm of a matrix are denoted by
‖ · ‖2. We refer to a matrix with orthonormal columns as a
basis matrix. Notice that for a basis matrix P , P ′P = I . For
a set T of integers, |T | denotes its cardinality. For a vector
x, xT is a vector containing the entries of x indexed by T .
Define IT to be the matrix of those columns of the identity
matrix indexed by T . We use the interval notation [a, b] to
mean all of the integers between a and b, inclusive.

2. PROBLEM DEFINITION AND ASSUMPTIONS

At time t we observe a vector mt ∈ Rn that is the sum of a
vector from a slowly changing low-dimensional subspace `t
and a sparse vector xt. So

mt = `t + xt for t = 0, 1, 2, . . . , tmax,

We model the low-dimensional `t’s as `t = Ptat for a basis
matrix Pt that is allowed to change slowly over time. Given
an estimate of the initial subspace P̂(0), the goal is to obtain
estimates x̂t and ˆ̀

t at each time t and to periodically update
the estimate of the subspace span(Pt).

2.1. Model on `t

1. Subspace Change Model for `t
Let tj for j = 1, . . . , J be the times at which the sub-
space where the `t’s lie changes. We assume `t = Ptat
where Pt = P(j) for tj ≤ t < tj+1. P(j) is a basis
matrix that changes as P(j) = [P(j−1) P(j),new]. Then
at can be split as at = [at,∗

′ at,new
′]′. Let rj =

rank(P(j)) and define r := rJ = maxj rankP(j).
Also let cj,new = rank(P(j),new) and define c :=
maxj rank(P(j),new).

Assume that r < min{n, tj+1 − tj} for all j.

2. Assumptions and notation for at
We assume that the at’s are zero mean bounded random
variables that are mutually independent over time. Let

γ := sup
t
‖at‖∞ and γnew := sup

t
‖at,new‖∞.

Define Λt := Cov(at) and assume it is diagonal. Let
(Λt)new := Cov(at,new). Define λ− := inft λmin(Λt)
and λ+ := supt λmax(Λt), and assume that 0 < λ− ≤
λ+ <∞. Also, for an integer d, define

λ−new := min
j

min
t∈[tj ,tj+d]

λmin((Λt)new)

λ+new := max
j

max
t∈[tj ,tj+d]

λmax((Λt)new).

Then define

f :=
λ+

λ−
and g :=

λ+new
λ−new

.

2.2. Model on xt

Let Tt := {i : (xt)i 6= 0} be the support set of xt and let
s := maxt |Tt| be the size of the largest support. Let xmin :=
inftmini∈Tt |(xt)i| denote the size of the smallest non-zero
entry of any xt.

Assume one of the following two models on support
change of xt. The first model is for an object of length s or
less that moves with probability q and remains stationary with
probability 1− q at each time instant independent of all other
times. Also, when it moves, it moves by s

% plus small random
acceleration, νt for a constant % ≥ 1. The second model is for
an object of length s that moves a little at each time. These
are two special cases that are our result can handle. For the
most general case, see [1, Section III].

Model 2.1. Consider one-dimensional motion of the support
of xt, and let ot be its center at time t. Suppose that the
support moves according to the model

ot = ot−1 + θt

(
1.1

s

%
+ νt

)
(1)

where νt is Gaussian N (0, σ2) and θt is a Bernoulli random
variable that takes the value 1 with probability q and 0 with
probability 1− q, and % ≥ 1 is a constant. Assume that {νt},
{θt} are mutually independent and independent of {at} for
t = 1, . . . , tmax.

The above model allows the object to change in size over
time as long as its center moves by the required amount and
its size is bounded by s.

Model 2.2. Suppose that the support of xt is of a constant
size s, consists of consecutive indices, and moves in a given
direction by between 1 and a indices at every time t.

Remark 2.3. In both models, when the object reaches index
n, it can change direction and move up until it reaches index
1, where it is reflected back downward again. Or, a new object
can appear at index 1 or n after the first has left the scene.

2.3. Subspace Denseness

Definition 2.4. For a basis matrix P , define κs(P ) :=
max
|T |≤s

‖IT ′P ‖2. As described in [11], small κs means that

the columns of P are dense vectors.

Our result needs an upper bound on κ2s(P(J)) and
κ2s(P(j),new).

3. MAIN RESULT

In this section we state and discuss our main result for the
ReProCS algorithm introduced in [11, Algorithm 1]. We do
not repeat the algorithm here due to lack of space. Its main
idea is briefly explained next.
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Main idea of the ReProCS algorithm [11, Algorithm
1]. Given an accurate estimate of the subspace where the
`t’s lie, projecting the measurement mt = xt + `t onto the
orthogonal complement of the estimated subspace will nullify
most of `t. The denseness of `t implies that this projection
will have a small restricted isometry constant [11]. Thus ba-
sis pursuit denoising (BPDN) applied to the projected mea-
surements will produce an accurate estimate x̂t [17]. Then,
subtraction also gives a good estimate ˆ̀

t = mt − x̂t. Using
these ˆ̀

t’s, the algorithm successively updates the subspace
estimate by a modification of the standard PCA procedure,
which we call projection PCA. The algorithm uses knowledge
of tj , cj,new, r0, and γnew.

Theorem 3.1. Consider Algorithm 1 of [11]. Assume the
model given in Sec. 2. Pick a ζ that satisfies

ζ ≤ min

(
10−4

r2
,
1.5× 10−4

r2f
,

1

r3γ2

)
and suppose that tmax ≤ n10. If

1. The algorithm parameters are set as: K =
⌈
log(0.17cζ)
log(0.72)

⌉
;

ξ =
√
cγnew +

√
ζ(
√
r +
√
c); 7ξ ≤ ω ≤ xmin − 7ξ;

α = C(log(6KJ) + 11 log(n)) for a constant C ≥
Cadd := 4800

(ζλ−)2 max{16, (1.2ξ)4}

2. ‖(I − P̂(0)P̂(0)
′)P(0)‖2 ≤ r0ζ;

3. The subspace changes slowly enough such that

• tj+1 − tj > d ≥ Kα for all j;
•
√
cγnew +

√
ζ(
√
r +
√
c) ≤ xmin

14 ;

• g ≤
√
2;

4. The low dimensional subspace is dense such that
κ2s(P(J)) ≤ 0.3; and maxj κ2s(P(j),new) ≤ 0.02.

5. The support set of xt changes enough so that either

• Model 2.1 holds with σ2 ≤ s2

4000%2 log(n)
; q ≥

1−
(

n−10

2(tmax+α)

) 50%2

α

; and s ≤ n
2α ; or

• Model 2.2 holds with s ≤ α
400 ; and α ≤ n

a

Then, with probability at least 1−n−10, at all times t, the
support of xt is recovered exactly, i.e. T̂t = Tt.
Corollary 3.2. Under the above assumptions, the recov-
ery error satisfies: et := x̂t − xt = `t − ˆ̀

t satisfies
‖et‖2 ≤ 1.2

(
1.83
√
ζ + (0.72)k−1

√
cγnew

)
when t ∈ [tj +

(k− 1)α, tj + kα− 1], k = 1, 2, . . . ,K and ‖et‖2 ≤ 2.4
√
ζ

when t ∈ [tj +Kα, tj+1 − 1].

The subspace error SEt := ‖(I − P̂tP̂t
′)Pt‖2 satisfies:

SEt ≤ 10−2
√
ζ + 0.72k−1 when t ∈ [tj + (k − 1)α, tj +

kα − 1], k = 1, 2, . . . ,K and SEt ≤ 10−2
√
ζ when t ∈

[tj +Kα, tj+1 − 1].

Proof: For the proof, see [1].

4. SIMULATION EXPERIMENT

Figure 1 is shows the results of a simulation experiment that
demonstrates Theorem 3.1 and Corollary 3.2. Data was gen-
erated to satisfy the assumptions of the theorem. For details,
see [1, Section VIII]. The batch method PCP was performed
every α time instants using all of measurements up to that
point. Since the support of xt changed in a highly correlated
fashion, it resulted in the matrix X = [x1, . . . ,xtmax

] be-
ing also very low rank. Because of this, the PCP recovery
error is large. The ReProCS error is much smaller and de-
cays exponentially with each projection PCA step (as shown
by Corollary 3.2).

Fig. 1. Recovery error (top) Support pattern of X (bottom)

5. NOVELTY OF PROOF TECHNIQUES

Our proof uses the overall framework of [11], but we need
a new approach to analyze the subspace estimate update step
in order to remove the assumption on intermediate algorithm
estimates used by the result of [11]. The key new idea is
to leverage the fact that, because of exact support recovery,
the error et := x̂t − xt = `t − ˆ̀

t is supported on Tt.
Also, our support change model ensures that Tt changes at
least every so often. Together, this ensures that the matrix
[etj+(k−1)α, etj+(k−1)α+1, . . . , etj+kα−1] is a block banded
matrix with only 2%+ 1 bands.

This work and the earlier work on which this is based [11]
need new proof techniques because, as explained in the intro-
duction, all existing correctness results for this problem are
only for batch methods. Moreover, our proof cannot just be a
combination of a sparse recovery result and a result for PCA,
because in the PCA step for ReProCS, the error between ˆ̀

t

and `t is correlated with `t (this is because ˆ̀
t = mt − x̂t

and the error in x̂t depends on the projection of `t into the
space perpendicular to P̂t). But almost all existing work on
finite sample PCA assumes that the error between the mea-
sured and true data vectors is uncorrelated with the true data,
see e.g. [18] and references therein.
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6. DISCUSSION

The result needs accurate initial subspace knowledge (easy to
a obtain using a short training sequence of background-only
video data), a slow subspace change assumption, a support
change assumption and a denseness assumption.

Consider the subspace change model. This model (along
with the bound on γnew from the theorem) assumes that after
a subspace change, ‖at,new‖∞ and therefore also ‖(Λt)new‖2
are initially small. After tj + d, the eigenvalues of (Λt)new
are allowed to increase up to λ+. Thus a new direction added
at time tj can have variance as large as λ+ by tj + d and def-
initely by the next subspace change time since tj+1 ≥ tj + d.
As demonstrated in [11], this slow subspace change assump-
tion is valid for backgrounds in real video sequences.

Consider the support change models. Both Models 2.1
and 2.2 are valid and commonly used models for foreground
object motion in videos. If we assume Model 2.1, our result
requires s ≤ n

2α . If J ≤ C1 log n for some constant C1, then
using the definition of α, this bound holds if s ≤ C2

n
logn . If

r0 ≤ C3 log n for a constant C3, we get that r ≤ C4 log n.
Thus, this model allows s ∈ O( n

logn ) and r ∈ O(log n).
As we explain next, these bounds on s and r also satisfy our
denseness assumption.

Consider denseness. The way κs is defined, our dense-
ness assumption simultaneously places restrictions on dense-
ness of `t, and on r and s. As done in [3], we could as-
sume κ1(P(J)) ≤

√
µr
n , where µ is any value between 1 and

n
r . It is easy to show that κs(P ) ≤

√
sκ1(P ) [11]. Thus if

2sr
n ≤ µ−1(0.3)2, then our assumption of κ2s(P(J)) ≤ 0.3

will be satisfied. Clearly the bounds on s and r from above
ensure this up to appropriate choice of constants.

Comparison with other work. The above requirement
on s and r is stronger than that used by [3] (which studies
the batch approach PCP). There s is allowed to grow linearly
with n, and r is simultaneously allowed to grow as n

log(n)2 .
But, up to differences in the constants, the above is same as
the requirement found in [19] (which also studies the PCP
program and is an improvement over [4]), except that [19]
does not need specific bounds on s and r. The compari-
son is not direct though because our result does not need
denseness of the right singular vectors of L or a bound on
the vector infinity norm of UV ′, while [3, 4, 19] do. Here
L = [`1, . . . , `tmax

]
SVD
= UΣV ′. The reason for our stronger

requirement on sr is because we study an online algorithm,
ReProCS, that recovers the sparse vector xt at each time t
rather than in a batch or a piecewise batch fashion. Because
of this, the sparse recovery step does not use the low dimen-
sionality of the new (and still unestimated) subspace.

Because we only require that the support changes after a
given maximum allowed duration, it can be constant for a cer-
tain period of time (Model 2.1), or it can change only a little
at each time (Model 2.2). This is a substantially weaker as-
sumption than the independent or uniformly random supports

required by [3] and [15]. As we explain in [1], if we consider
the whole matrix X = [x1, . . . ,xtmax

], then at most tmax

5000
non-zero entries per row are allowed. Thus, for r > 5000, this
also is a significant improvement over [19] which requires at
most tmax

r non-zero entries per row. Therefore, an important
advantage of our result is that it allows for highly correlated
support sets of xt, which is important for applications such
as video surveillance that involve one or more moving fore-
ground objects or persons forming the sparse vector xt.

Now consider works that also use initial subspace knowl-
edge. Our result improves upon [11]’s results by removing the
denseness requirements on (I−P(j),newP(j),new

′)P̂(j),new,k

and (I− P̂(j−1)P̂(j−1)
′− P̂(j),new,kP̂(j),new,k

′)P(j),new and
thus providing a complete correctness result. In [13], Feng
et. al. propose a method for online robust PCA and prove a
partial result for their algorithm. The approach is to reformu-
late the PCP program and use this reformulation to develop
a recursive algorithm that converges asymptotically to the so-
lution of PCP as long as the basis estimate P̂t is full rank at
each time t. Since this result assumes something about the
algorithm estimates, it is only a partial result. Another work
of Feng et. al. [14] on online robust PCA does not model the
outlier as a sparse vector but defines anything that is far from
the data subspace as an outlier. Another recent work that uses
knowledge of the initial subspace estimate is modified-PCP
[15]. However, like PCP, this also needs uniformly random
supports. Moreover it is a piecewise batch approach.

Limitations and Ongoing Work. An important limita-
tion of our result is that we analyze an algorithm that needs
knowledge of subspace change model parameters (tj , cj,new,
r0, γnew) which is not true of other algorithms such as PCP.
We should point out though that it does not assume any knowl-
edge of the support change model. The most limiting as-
sumptions are knowing tj and cj,new. In ongoing work, we
are able to remove this requirement. Another assumption we
need is the zero mean and independence of the `t’s over time.
If a mean background image (obtained by averaging an ini-
tial sequence of background only training data) is subtracted
from all measurements, then zero mean is valid. Moreover, if
background variation is due to small and random illumination
changes, then independence is also valid (or close to valid). In
ongoing work, we are able to remove this and instead allow
for a more realistic autoregressive model on the `t’s.

Our subspace change model only allows for adding new
directions to the subspace. This is a valid model if, at time t,
the goal is to estimate the column span of the matrix Lt :=
[`1, `2, . . . , `t], which is the goal in robust PCA. However,
when xt is the quantity of interest and `t is the large but
structured noise, this model can be restrictive. A better model
would be one that also allows removal of directions from P(j),
e.g., Model 7.1 of [11]. This significantly relaxes the required
denseness assumption, and is being done in ongoing work.

A fundamental limitation of our analysis approach is the
assumption that subspace changes every so often.
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