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Abstract— In this paper, we study the problem of sparse signal inevitably incurs errors. In this paper, we propose an im@do
recovery when partial but partly erroneous prior knowledge hierarchical prior model. The proposed modeling constitt
of the signal’'s support is available. Based on the conventional three-layer hierarchical form. The first two layers, simila

sparse Bayesian learning framework, we propose an improved th fi | B ian | . | G .
hierarchical prior model. The proposed modeling constitutes a € conventional sparse bayesian learning, place a Ladssia

three-layer hierarchical form. The first two layers, similar to the  inverse-Gamma prior on the signal, while the third layer is
conventional sparse Bayesian learning, place a Gaussian-inversenewly added with a prior placed on the parametébs}.
Gamma prior on the signal, while the third layer is newly added, Such a modeling enables to distinguish the true support from
with a prior placed on the parameters {b;}, where {b;} are pa- arroneous support through learning the values{if}. We

rameters characterizing the sparsity-controlling hyperparametrs - .
{a:}. Such a modeling enables to automatically learn the true '€SO' 10 the variational inference methodology to perfeinm

support from partly erroneous information through learning the ~ Bayesian inference on the proposed three-stage hierafchic
values of the parameters{b;}. A variational Bayesian inference model, and develop a new sparse Bayesian learning method

algorithm is developed based on the proposed prior model. which has the ability to distinguish the true support frora th
Numerical results are provided to illustrate the performance of erroneous information.

the proposed algorithm.
Index Terms— Compressed sensing, sparse Bayesian learning,

prior support knowledge. Il. HIERARCHICAL PRIOR MODEL

|. INTRODUCTION We consider the problem of recovering a sparse signal
We study the problem of sparse signal recovery when priif* from noise-corrupted measurements

information on the signal’s partial support is available. |
practice, prior information about the support region of the y=Ax+w D)
sparse signhal may be obtained from the support estimate of
the previous time instant. This is particularly the case fovhere A € R™*" (m < n) is the measurement matrix, and
time-varying sparse signals whose support changes slowdyis the additive multivariate Gaussian noise with zero mean
over time. For example, in the real-time dynamic MRI reand covariance matrix®I. Suppose we have partial but partly
construction, it was shown that the support of a medic&froneous knowledge of the support of the sparse sigrighe
image sequence undergoes a small variation with the supg®ior knowledgeP’ can be divided into two parts? = S'U
changes (number of additions and removals) less #arof £, whereS denotes the subset containing correct information
the support size. The problem of sparse signal recovery whout the support anfi denotes the error subset. If we [Et
partial support information was studied in several indelees  denote the true support af and 7 denote the complement
and parallel works [1]-[3]. It has been observed by extensief the setT’, i.e. TUT* = {1,2,...,n}, then we haves C T,
experiments [1]-[3] that the sparse recovery performaree cand 2 C 7. Note that the only prior information we have is
be significantly improved through exploiting the prior sopgp P. The partition ofS and £ is unknown to us.
knowledge. Nevertheless, this performance improvement ca We develop a sparse signal recovery algorithm which has
only be achieved when the prior knowledge of the signalthe ability to distinguish the correct support from errongo
partial support is fairly accurate. Existing methods, ¢l§= information and thus can exploit the prior support inforimt
[3], suffer from severe recovery performance degradation im a more constructive way. To this objective, we will propos
even recovery failure in the presence of inaccurate prionkn a new hierarchical sparse Bayesian learning (SBL) model
edge. In practice, however, the estimate of the signal’psup which allows to learn the correct information from the partl

) _ . . . erroneous knowledge. Before we proceed, we first provide a
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A. Overview of Hierarchical Models for Conventional SBL The above modified hierarchical model effectively integsat

In the conventional sparse Bayesian learning framework € Prior support information into the sparse Bayesiamiear
two-layer hierarchical prior model was proposed to promofeamework. Nevertheless, the modified two-layer hierarahi
the sparsity of the solution. In the first layar,is assigned a model which assigns fixed values {6, } still lacks flexibility

Gaussian prior distribution to learn and adapt to the true situation. To address thigissu
n we partition the parameter®;} into two subsets{b;,Vi €
p(z|a) = Hp(xi\ai) (2) P} and{b;, Vi € P°}, whereP* denote the complement &f,
bl ie. PUP®={1,2...,n}. For {b;,Vi € P°}, the parameters

are still considered to be deterministic and assigned a very
wherep(z;|a;) = N(z;|0,a; ), anda £ {a;}, the inverse small value, i.e.

variance (precision) of the Gaussian distribution, are-non .
negative hyperparameters. The second layer specifies Gamma b; =10~ Vi € P¢ (6)

distributions as hyperpriors over the hyperparamefet$, i.e. pqr {b:,Vi € P}, instead of assigning a fixed large value, we

n n v a1 —ba model them as random parameters and place hyperpriors over
ple) = [[ Gammdasla,b) = [[T(@) 0% "™ (3) (Vi € P}. Since{b;, Vi ¢ P} are expected to be positive
=1 =1 values, suitable priors ovefb;,Vi € P} are also Gamma

whereT'(a) = [;* t*~'e~'dt is the Gamma function, the pa-distributions:

rametersy andb used to characterize the Gamma distribution _ _ —1 _pip—1 _—qb; )

are chosen to be very small values, el§-*, in order to Gammabilp, q) = I(p)”"¢"b;" e vier (7)
provide non-informative hyperpriors ovéry;}. As discussed Where p and ¢ are parameters characterizing the Gamma
in [5], using a non-informative hyperprior allows to become distribution. Their choice will be specified later in thispes.
arbitrarily large. As a consequence, the associated cigeffic In doing this way, the modeling constitutes a three-layerdrt

z; will be driven to zero, thus vyielding a sparse solutiorthical form which allows to learn the parametéts, Vi € P}
This mechanism is also referred to as the “automatic retavarin an automatic manner from the data, and therefore has
determination” mechanism which tends to switch off most dhe ability to distinguish the correct support from errongo
the coefficients that are deemed to be irrelevant, and ordp kénformation.

very few relevant coefficients to explain the data. I1l. VARIATIONAL BAYESIAN INFERENCE

B. Proposed Hierarchical Models We now proceed to perform variational Bayesian inference

When the value of the paramethiis relatively large, e.g. based on the proposed hierarchical model. For notational
b =1, it can be readily observed from (3) that the hyperprio@@nvenience, define
are no longer non-informative and now they encourage small T
values of{«;}. In this case, an arbitrarily large value of ) . . .
is prohibited. As a result, the formulation of the two layeFollowing the conventional sparse Bayesian learning frame
hierarchical model does not result in a sparsity-encongagi o'k [5], we place a Gamma hyperprior over
prior and therefore does not necessarily lead to a sparse  p(y) = Gammdyl|c,d) = I'(c) " 1d*y* e~ (8)
solution. This fact, however, inspires us to develop a new wa h th ¢ dd tt Il val
to incorporate the prior support information into the sparsW ere eiaarame s andd are set to smafl values, €.g.
Bayesian learning framework. Specifically, instead of gsin ¢=d=10""

A 7 7. A . H
common parametér for all hyperparameterfo; }, we hereby L.et 0= {z, @7 b}, whereb {Z.)“VZ € P} are hidden
S variables as well since they are assigned hyperpriors aad ne
employ an individual parameteér, for each hyperparameter -
o Qe to be learned. We assume posterior independence among the

hidden variablest, o, +, andb, i.e.

p(a) = H Gammf&ai‘% bl) = H P(a’)ilbzqaiu_leibiai p($7 «, 7, l_)|y) %q(a)v o, 7, E)
=1 =1 @) =0z (T)qa () gy (7)q5(b) ©)
X\lith this mean field approximation, the posterior distribat

Such a formulation allows us to assign different priors t . . .
g P of each hidden variable can be computed by minimizing

different coefficients. If a partial knowledge of the sigsal . . . .
. . . the Kullback-Leibler (KL) divergence while keeping other
support,P, is available, then the associated parametefsgf riables fixed using their most recent distributions, \whic

can be set to a relatively large value, say 1, in order to plax%es
a non-sparsity-encouraging prior on the correspondincjfieoeg

cients, whereas the rest parameters{igf} are still assigned  Ing.(z) =(Inp(y,x, &, 7,b)) 4. (a)q, (v)q;B) + CONStaNt

) =( b))
a small value, say0~4, to encourage sparse coefficients, that In ga (@) =(Inp(y, =, , 7, b)) (010 (410 (5) -+ CONStaNt
is, a P T T g () 4y (1) 0
, 1 iep - In qv('_y) =(lnp(y, z, a, 7, l_))}QI(w)qa(a)%(g) + constant
"7 1107* otherwise In g5(b) =(Inp(y, @, 0,7, b)) g, ()4 (a)q, () + CONStaNt
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Details of this Bayesian inference scheme are providedibelavhere

1). Update of ¢, (x): The variational optimization of..(x) s
can be calculated as follows by ignoring the terms that are c=g e
independent ofc: 5 1
P d=d+((y—A0)(y - Aw)) @) (18)

Ing(z) oc(Inp(yle, v) + Inp(x|a))q. a)q. (1)

o — %(y — Az)" (y — Az) — %wT<D>w (10)  ((y— Ax)"(y — Am)) 4, (@) = ly — Apl|2 +tr {ATAq>}
b

in which

We can easily verify thag(x) follows a Gaussian distribution  4). Update of ¢;(b): The variational optimization of(b)
with its meanu and covariance matri® given respectively yields:

as § In g5(B) o< (In p(cx|a, b) + n p(Blp, 0)) g (e)
p=(7eA'y ) o> {=bifes) + (p— 1)Inb; — gb;} (19)
&= (()ATA+ (D)) (11) ieP

from which we can readily arrive at
2). Update of ¢, (c): Similarly, the approximate posterior

o () can be computed as q(b) = | [ Gamma,|p, d:) (20)
i€epP
Ingo () oc{lnp(z|a) + Inp(eala, b))y, ()4 (5 where
= - ; — 2 oy = i = q + {0y
= Z <(a 0.5)Ina; — (0.5x7 + bl)az>q1(m)q5(b) G = q+ (o)
’ In summary, the variational Bayesian inference consists of
@ Z {(a+0.5)Ina; — ((b;) +0.5(x7))e; } successive update of the approximate posterior distabsti
ieP for hidden variablez, «, v, andb. Some of the expectations
+ > {(a+05)Ina; — (b +0.5(z7))ai} and moments used during the update are summarized as
i€epPe (o) a ) c
;) = =— = =
(12) b, =G
where in(a), the terms inside the summation are partitioned (x2) = p3 + dii (bi) = P
into two subsetsP and P¢ because{b;,i € P¢} are de- £y

terministic parameters whose values are given in (6), whitghere ;; denotes theth element ofu, and ¢; ; denotes the
{b;,i € P} are latent variables and thus we need to perforith diagonal element o®. We now summarize our algorithm
the expectation over these hidden variables. The posigidor as follows.

has a form of a product of Gamma distributions Partial Support Aided-SBL with Support Learning

_ - ~ 7 1. Given the current approximate posterior distributions
= Gammaq;|a, b; 13 - )
al@) };[1 daila, bi) (13) of go (), ¢4(7v) andgz(b), updatey, (x) according to
~ (112).
with the parameterg andb, given by 2. Giveng,(z), ¢,(v) andg;(b), updateg, () accord-
- ing to (13)—(15). ~
a=a+05 a4) 3 Giveng, (), ¢o (), andg;(b), updateg, () accord-

; {<bi>+0.5<x2> icp ing to (17)~(18). '

P =

15 4, Giveng,(x), g.(ax) and , updateg; (b) accord-
b +0.5(z2) i€ Pe (15) N %2&)),) o () andg, (v), updateg;(b)
5. Continue the above iteration unfjle® — p(=1 ||, <
¢, wheree is a prescribed tolerance value. Chogsé
as the estimate of the sparse signal.

Ing, (v) oc{lnp(y|z,v) + Inp(vlc,d))q, (@) IV. SIMULATION RESULTS

3). Update of ¢, (v): The approximate posteria, (y) can
be computed as

x (% +c— 1) In~y We now carry out experiments to illustrate the performance
1 of our proposed algorithm. The proposed algorithm is refirr
- (2((1/ — Ax)" (y — Az)),, (@) + d) v (16) to as the support knowledge-aided sparse Bayesian learning
with support learning (SA-SBL-SL). Also, by placing fixed
It can be easily verified that(~) follows a Gamma distribution values to{b,} according to (5), a Bayesian variational method
- can be readily developed (Details are omitted due to theespac
q(v) = Gammay|¢, d) (I7)  limitation) and is referred to as the support knowledgesdid
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Fig. 1.
of the error set.

(b)

The success rate is computed as the ratio of the number of
successful trials to the total number of independent runs. A
trial is considered successful if the normalized recovergre

i.e. ||lx—2|3/||z||2, is no greater tham0—%, wherez denotes

the estimate of the true signal. Results are averaged over
1000 independent runs, with the measurement matrix and the
sparse signal randomly generated for each run. It can be seen
that our proposed SA-SBL-SL method presents a substantial
performance advantage over the SA-SBL-NSL and the SBL
methods. The performance gain is primarily due to the fact
that the SA-SBL-SL method is able to learn the true support
from the partly erroneous knowledge. We also observe that
when a considerable amount of errors are present in the prior

(). Success rates vs. the ratig'n; (b). Success rates vs. the sizeknowledge, the methods SA-SBL-NSL and MBP have no

advantage over the methods SBL and BP. To examine the
behavior of the SA-SBL-SL method more thoroughly, we fix
the number of elements in the sgtand increase the number

o ' ' [—=—sA-sBLsL of elements in the error sét. Fig. 1(b) depicts the success
1.2 _"_gg[SBL‘NSL- rates vs. the number of elements in the errorEewhere we
1_"\‘ -0~ MBPDN setm = 25, |S| = 12 and|E| varies froml to 15. As can be
. ‘-A- BPDN seen from Fig., when a fairly accurate knowledge is avalabl

Fig. 2.

NMSEs vs. the signal-to-noise ratio.

50

the SA-SBL-NSL achieves the best performance. This is an
expected result since little learning is required at thi;po
Nevertheless, as the number of elemeiis, increases, the
SA-SBL-NSL suffers from substantial performance degrada-
tion. As compared with the SA-SBL-NSL, the SA-SBL-SL
method provides stable recovery performance throughilegrn
the values of{b;}, and outperforms all other algorithms when
prior knowledge contains a considerable amount of errors.
We, however, notice that the proposed SA-SBL-SL method is
surpassed by the conventional SBL method when inaccurate
information becomes dominant (eldZ| = 15), in which case
even learning brings limited benefits and simply ignoring th
error-corrupted prior knowledge seems the best strategy.

sparse Bayesian learning with no support learning (SA-SBL-\e now consider the noisy case where the measurements

NSL). In our simulations, the parametgrandgq are set to be gre contaminated by additive Gaussian noise. The norndalize

p=0.1andqg=0.1.
Suppose thd{-sparse signal is randomly generated with thgytio (SNR) are plotted in Fig 2, where we set = 25,

support set of the sparse signal randomly chosen accordingit — 50, K = 16, |S| = 12, and

mean-squared errors (NMSES) as a function of signal-teenoi

E| = 6. The MBP-DN

a uniform distribution. The signals on the support set are iy a noisy version of the MBP method [4]. We observe that
dependent and identically distributed (i.i.d.) Gauss@mdom the conventional SBL and BP-DN methods outperform their
variables with zero mean and unit variance. The measuremgs¥pective counterparts: SA-SBL-NSL and MBP-DN. This,

matrix A € R™*" is randomly generated with each entnggain, demonstrates that SA-SBL-NSL and MBP-DN methods
independently drawn from Gaussian distribution with zergre sensitive to prior knowledge inaccuracies. On the other
mean and unit variance. The prior support informatiBn hand, the proposed SA-SBL-SL method which takes advantage
consists of two subsets? = SUE, whereS C T denotes the of the support learning presents superiority over both the
subset containing the correct information about the suppatonventional SBL as well as the SA-SBL-NSL method.

and E C T¢ is a subset comprised of false information. In
our simulations, the partition of and E is unknown. We
compare our proposed algorithms with the conventionalsspar
Bayesian learning (SBL), the basis pursuit (BP) method, andwe developed an improved sparse Bayesian learning method

V. CONCLUSIONS

the modified basis pursuit (MBP) method [1].

We first consider the noiseless case. Fig. 1(a) plots thed learn the true support from partly erroneous infornmatio
success rates of respective algorithms vs. the rajin, where
we setK = 16, n = 50, |S| = 12 and |E| = 8, |S| and |E]

denote the cardinality (size) of the sgtand E, respectively.

which is able to accommodate the prior support knowledge

Numerical results show that our proposed algorithm ackieve
a significant performance improvement through learning the
underlying true information from partly erroneous knovwged
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