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ABSTRACT

Sparse models in dictionary learning have been successfully
applied in a wide variety of machine learning and computer
vision problems, and have also recently been of increasing
research interest. Another interesting related problem based
on a linear equality constraint, namely the sparse null space
problem (SNS), first appeared in 1986, and has since inspired
results on sparse basis pursuit.

In this paper, we investigate the relation between the SNS
problem and the analysis dictionary learning problem, and
show that the SNS problem plays a central role, and may be
utilized to solve dictionary learning problems. Moreover, we
propose an efficient algorithm of sparse null space basis pur-
suit, and extend it to a solution of analysis dictionary learning.
Experimental results on numerical synthetic data and real-
world data are further presented to validate the performance
of our method.

Index Terms— Sparse null space problem, analysis dic-
tionary learning, sparse representation, high dimensional sig-
nal processing

1. INTRODUCTION

High dimensional data analysis has been a high focus of re-
search in diverse areas, including machine learning, computer
vision, and applied mathematics, on account of its theoretical
complexity, and high relevance to big data problems. Dictio-
nary learning has been one of the fundamental methodologies
to handle high dimensional data, and has successfully been
applied to feature extraction [1], denoising [1] [2] [3], recog-
nition and classification [4], etc.

Specifically, recent research has shown that sparse mod-
els are crucial to learning a discriminating and robust dictio-
nary [2]. In particular, data samples are assumed to lie on
a union of subspaces (UoS), and a parsimonious constraint
on the use of atoms to represent each data point helps to re-
cover the underlying basis of each subspace [7] [8]. Both
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synthesis models and analysis models were proposed to re-
veal the sparsity property of data. In synthesis models, we
have a synthesis dictionary D = [d1, . . . ,dn] such that xi =∑

j∈S djwij , ‖S‖0 ≤ k, where xi is our data, dj is the jth

atom in the dictionary, and wij the corresponding coefficient.
On the other hand, an operator H is adopted in an analysis
model such that H ◦ xi gives a sparse vector representing
xi [9][3].

Another interesting problem invoking sparsity, is the
sparse null space problem (SNS), first proposed in 1986 by
Coleman and Pothen [10]. This is yet to be related to the
state-of-the-art methods in dictionary learning. The SNS
problem may be stated as finding a sparse basis for the null
space of a given matrix A. The derived elegant results of
the sparse null space problem, turn out not only useful in
helping us understand the dictionary learning problem, but
as we further elaborate, also in providing insight for solving
practical problems.

In this paper, we hence study the relation between the
SNS problem and the dictionary learning problem, and as we
shall show next, the SNS problem is equivalent to the analy-
sis dictionary learning (ADL) problem. We then proceed to
solve an ADL problem using methods for the SNS problem.
Specifically, inspired by the existing results for the SNS prob-
lem and the state-of-the-art of sparsity pursuit algorithms, we
present an l1 minimization-based greedy algorithm to solve
the SNS problem. In contrast to current mainstream algo-
rithms [2][3][4][11], the convergence of our method is as-
sured by both the convergence of the greedy algorithm and
the convex l1 minimization. Moreover, we demonstrate its
superior performance on both synthetic numerical data and
real-world data.

The remainder of this paper is organized as follows. In
Section 2, we analyze the relation of the SNS problem to
the ADL problem, and show their equivalence. In Section 3,
building upon the results of the solution of SNS problem, we
present an effective method to solve the SNS problem, which
can essentially also be used to handle the ADL problem. Fi-
nally, in Section 4 we validate our method on the analysis
dictionary learning problem by numerical experiments, and
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illustrate the effectiveness of our algorithm on texture classi-
fication.

A brief summary of notations used throughout this paper
is as follows: The sparsity of an m × n matrix X, defined as
‖X‖0
mn , is denoted by ρ(X). We denote by PX the projection

matrix onto col(X), and by PX⊥ = I−PT
XPX the projection

matrix onto null(X). Additionally, given a vector y ∈ Rn,
operator (·)j returns the value of the jth element of y. The
adjoint operator of (·)j , denoted as (·)∗j , is hence as follows:
(c)∗j = v ∈ Rn, such that (v)j = c and (v)i = 0, if i 6= j.

2. FROM SNS TO ADL

In this section, we reformulate the SNS problem and the ADL
problem in a matrix form, and then proceed to establish the
equivalence by way of the common solution they share.

Given any m × n matrix A such that row(A) ⊂ Rn, the
SNS problem may be defined as follows,

SNS(A) = argmin
N
‖N‖0, s.t. col(N) = null(A). (1)

Let X = [x1, . . . , xn] be a generic data matrix, the ADL
problem can then be rewritten as

ADL(X) = argmin
U
‖U‖0,

s.t. DX = U, row(X) = row(U), (2)

where D is an analysis operator in matrix form, and U is the
corresponding sparse coefficient matrix. To avoid trivial so-
lutions as U = 0, we further require row(X) = row(U).
Essentially, this is the maximum information we can preserve
for X, since any row of U is a linear combination of rows in
X, and hence row(U) ⊆ row(X). In practice, we may also
consider the case that row(U) ⊂ row(X) by further selecting
a subset of di in D. We are focusing on the generic formula-
tion, i.e. row(X) = row(U), in this section for the sake of
theoretical analysis, and will elaborate on this issue later in
the discussion of the detailed algorithm.

We note that finding a sparse representation of null space
in Problem (1), is equivalent to sparsifying a given matrix N̂
such that col(N̂) = null(A). This coincides with the goal
of Problem (2) where the row space of the data matrix X is
instead invoked. In particular, we have the following theorem,

Theorem 1. Assume null(A) = row(X), then a matrix N is
a minimizer of the SNS problem (as shown in (1)), if and only
if NT is a minimizer of the ADL problem (as shown in (2)) .

This essentially tells us that we can solve a sparse dictio-
nary learning problem, should we have access to an effective
method to solve the corresponding SNS problem. Specifi-
cally, given a data matrix X = [x1, . . . , xn], the analysis dic-
tionary for X may be constructed in the following three steps:

1. Build a matrix A such that row(A) = null(X), i.e.
XAT = 0 and rank(A) + rank(X) = n.

2. Find the sparse feature vectors UT by solving N =
SNS(A).

3. Construct the analysis operator D from DX = U.

3. AN ITERATIVE SPARSE NULL SPACE PURSUIT

We have discussed the relation of SNS and ADL in Section 2,
and have shown that they may be cast in one unified frame-
work of sparse null space pursuit. Nevertheless, solving SNS
is itself a difficult problem. Coleman and Pothen [10] have
proved that SNS is essentially NP-hard, hence ruling out a
polynomial time algorithm. We however show, it is still pos-
sible to approximate the sparse null space basis in polynomial
time. In this section, we propose an iterative method based on
l1 minimization for sparse null space pursuit.

3.1. A greedy algorithm for the SNS problem

Previous works on the SNS problem have shed light on find-
ing a solution in polynomial time. In [10], the authors pro-
posed a greedy algorithm for the SNS problem. For the con-
venience of further discussion, we present the greedy algo-
rithm as Algorithm 1. Additionally, it has been proved in [10]
that Algorithm 1 can be used to construct a sparse null space
basis, as stated in Theorem 2 [10].

Algorithm 1 A greedy algorithm for sparse null space prob-
lem

Initialize: matrix A ∈ Rm×d, N = ∅
for i = 1, ... , q do

Find the sparsest null vector ni such that rank(N ⊕
ni) = i.

N = N⊕ ni

end for

Theorem 2. A matrix N is a sparsest null basis of A if and
only if it can be constructed by the greedy algorithm.

It is worth noting that the maximum number of iterations
q in Algorithm 1 is constrained by the rank of A, i.e. q =
d − rank(A). Moreover, this greedy algorithm can find the
global optimal solution for the SNS problem. This elegant re-
sult amount to finding the sparsest null space basis of A in ex-
actly q steps. The subproblem of finding a sparsest null vector
itself, is however also a NP-hard problem [10]. We therefore
next focus on finding a method to solve this subproblem in
each iteration of Algorithm 1.

3.2. l1-based search for sparse null space

We first reformulate the subproblem of finding a sparsest null
vector in Algorithm 1 as follows,

min
ni
‖ni‖0, s.t. Ani = 0, PN⊥

i
ni 6= 0, (3)
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where Ni is the subspace spanned by the constructed null
space vectors in the previous (i − 1)th iteration. The con-
dition PN⊥

i
ni 6= 0 implies that ni is not in the current span of

N, and hence rank(Ni ⊕ ni) = rank(Ni) + 1.
There are two inherent difficulties in this formulation.

First, ‖ · ‖0 is of combinatorial nature, hence the reason of the
NP-hardness of the problem. Second, the constraint in (3)

PN⊥
i

ni 6= 0, (4)

defines a region that is neither compact nor convex. To
address the first problem, we propose to take advantage
of established results on sparsity pursuit via l1 minimiza-
tion [12][13]. While for the second one, and in order to have
a convex and compact feasible region, we further adjust the
condition PN⊥

i
ni 6= 0 as follows,

∃j ∈ {1, . . . , d}, (PN⊥
i

ni)j = c, (5)

where c is a positive constant.

Algorithm 2 Sparse Null Space Basis Pursuit
Initialize: matrix A,N = ∅
for i = 1, ... , p do

for j = 1, ... , d do
Find nj

i = argmin ‖n‖1,
s.t. An = 0, (PN⊥n)j = c

end for
ni = argmin ‖nj

i‖0
N = N⊕ ni

end for

This is tantamount to solving the following optimization
problem for each j in Algorithm 2,

min
n
‖n‖1,

s.t. An = 0, (PN⊥n)j = c. (6)

It is worth noting that the exact recovery of each n via (6)
is determined by the incoherence of the linear operator de-
fined by the two constraints and the sparsity of each n. To
solve (6), we adopt the framework of augmented Lagrange
method (ALM) on account of its superior performance on
matrix-norm minimization problems [14] [15]. Specifically,
we have the augmented Lagrange function of (6) as

L(n,Y1,Y2, µ) = ‖n‖1 + 〈Y1,An〉+ 〈Y2, (PN⊥n)j − c〉

+
µ

2
‖An‖2 + µ

2
‖(PN⊥n)j − c‖2. (7)

The primal variable n is first updated in each iteration with
fixed dual variables Y1, Y2 and µ. By introducing an auxiliary
variable η, we have

nk+1 = T 1
µkη

(
nk −

n1
k + n2

k

η

)
, (8)

where T is the soft-thresholding operator, and ‖η‖2 ≥
‖A‖2 + ‖PN⊥‖2 [15], and

n1
k = AT

(
Ank +

Yk
1

µk

)
, (9)

n2
k = PN⊥

(
(PN⊥n)j − c+

Yk
2

µk

)∗
j

. (10)

Next, the dual variables Y1, Y2 and µ are updated as

Yk+1
1 = Yk

1 + µk (Ank+1) , (11)

Yk+1
1 = Yk

1 + µk ((PN⊥n)j − c) , (12)
µk+1 = min{ρµk, µmax}. (13)

The strategy of linearized ALM method provides a fast
convergence rate [15]. We utilized this strategy and therefore
have an method (Algorithm 2), named Sparse Null Space Ba-
sis Pursuit (SNS-BP), to solve the SNS problem efficiently.

Furthermore, in Section 2, we formulate the ADL prob-
lem with the constraint row(U) = row(X). However, when a
more compact representation of X is preferred, we may allow
row(U) ⊂ row(X), by which the dimension of the original
data space is further reduced. In particular, when X has been
already separated as desired, we may stop SNS-BP before the
pursuit null space reaches the maximum dimension.

4. EXPERIMENTS AND VALIDATIONS

In this section, we conduct a series of experiments, using both
numerical synthetic data and real-world data, to evaluate our
algorithm. In the first part, we use synthetic numerical data
that fit the formulation of SNS and ADL to validate the ef-
ficacy of our algorithm. In the second part, we show that
our algorithm SNS-BP has the potential of solving real-world
problems such as textural image classification.

4.1. Numerical experiments on SNS

For a better assessment of the capability of our algorithm, we
synthesize data that is compatible with the model of SNS and
ADL, and show that SNS-BP is able to reconstruct the sparse
null space basis of the SNS problem/the sparse coefficients of
the ADL problem.

First, we synthesize a d× q sparse matrix N as the sparse
null space basis of some matrix A, where A can be con-
structed by considering the singular value decomposition of
N and keep the left singular vectors of nonzero singular val-
ues as the rows of A, i.e. row(A) = null(N). All elements
in N follow a binomial distribution as zero/nonzero entries.
Moreover, the amplitude of each nonzero element is gener-
ated from a gaussian distribution.

The matrix A can then be seen as the input to SNS-BP,
and we may therefore compare the recovered null space basis
N̂ with the ground truth N. In Fig.1, we show one example of
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exact recovery of a sparse null space basis up to permutation
and scale.

(a) Randomly generated sparse basis N

(b) Recovered sparse null space basis N̂

Fig. 1. An example of the result of SNS-BP

Fig. 2. ‖N̂‖0/‖N‖0 vs Sparsity

In Fig.2, we present the sparsity level of N̂ with the spar-
sity of N varying from 0.01 to 0.2, i.e. 1% nonzero to 20%
nonzero. If our method works well, we would expect it to
find the sparsest basis, and therefore ρ(N̂) ≈ ρ(N), i.e. the
relative sparsity ρ(N̂)/ρ(N) ≈ 1. In Fig.2, 10 experiments
have been carried out and the average sparsity is calculated.
We can see that the sparse bases discovered by SNS-BP have
similar sparsity with N, with ρ(N) from 0.01 to 0.2. Addi-
tionally, define the relative error of N̂ as

err(N̂) =
‖N̂PΓ−N‖F
‖N‖F

, (14)

where P is an arbitrary permutation matrix, and Γ is a diag-
onal matrix representing the scales of each sparse basis. The
average relative error of all the experiments with the sparsity
of N from 0.01 to 0.2 is 1.69%.

4.2. Applications on real-world data

In this part, we further explore the potential of our method
on images. The performance of our algorithm is evaluated
on texture images from Brodatz database [16]. Each texture

image is partitioned into a set of patches, and then the anal-
ysis operator learned from patches of different textures is ap-
plied to incoming data, which is also segmented into sets of
patches. The properties of various textures may lead to dif-
ferent patterns of the corresponding sparse coefficients. We
therefore apply the learned operator to incoming data, and
compare the distribution of the associated coefficients with
those from training sets.

Specifically, we segment each texture image into 10 ×
10 patches, and randomly pick a subset of 120 patches as
the training set from each texture image, and the rest of the
patches are used as a testing set. In our experiment, we first
train the analysis operator by using half of the data in the
training set without knowing the label of each patch, and then
calculate the distribution of the coefficients Pi of the rest of
the patches from the ith class of texture in the training set.
In the next testing stage, texture images are used as a set of
patches, and we compare the distribution of Uj = DXj with
all Pi, and assign Xj to the class with the closest distribution,
such as

class(Xj) = argmin
i
d(Pi, PUj

). (15)

We use the total variation distance in ((15), as defined in [17]

d(p, q) = ‖p− q‖TV =
1

2

∑
x∈Ω

|p(x)− q(x)|. (16)

In this experiment, the classification rate is 94.78%. The per-
formance is higher than known state of the art methods based
on predesigned features, such as [18] with a 86.63% clas-
sification rate, and comparable to the supervised dictionary
learning algorithm [19]. It is worth noting that, the training
set is only composed of around 1% of the dataset. A less
stringent training set implies a lower computational cost. This
also demonstrates the scalability of our method, in light of the
competitive classification performance.

5. CONCLUSION

We have proposed in this paper, a novel approach for sparse
null space problem, and have proved the equivalence of the
sparse null space problem and the analysis dictionary learn-
ing. We have presented SNS-BP as an iterative algorithm
based on l1 minimization, to pursue the solution of the SNS
problem. We have further applied this algorithm to analysis
dictionary learning, and show the efficacy of our approach by
experiments on both synthetic dataset and real-world data in
texture classification.

Future work may include exploring the potential appli-
cation of ADL on other high dimensional database, such as
image/video classification.
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