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ABSTRACT

We consider the problem of estimating the singular vectors of low-
rank signal matrices buried in noise in the setting where the singular
vectors are assumed to be Kronecker products of unknown vectors.
We propose four algorithms for estimating such singular vectors, an-
alyze their performance and show that they asymptotically fail to
estimate to latent singular vector below the same critical SNR. We
corroborate our theoretical findings with numerical simulations and
illustrate the improved performance on a STAP beamforming appli-
cation.

Index Terms— Kronecker products, Random Matrices, Singu-
lar Value Decomposition, Space Time Adaptive Processing

1. INTRODUCTION

The singular value decomposition (SVD) is used to estimate low-
rank signal matrices buried in noise. Here we consider the setting
where the left singular vectors of the low-rank signal matrices are
Kronecker structured, i.e., they are Kronecker products of some un-
known unit-norm vectors. In this setting, we might expect to im-
prove the estimation of the low-rank signal matrices by exploiting
the underlying Kronecker structure.

In recent work, Tsiligkaridis and Hero [1] considered the prob-
lem of estimation of (full-rank) covariance matrices which were Kro-
necker products of (full-rank) covariance matrices. They developed
an algorithm that builds on the seminal work of Pitsianis and Van
Loan [2] on the estimation of matrices that can be expressed as sums
of matrices having Kronecker product structure. A rearrangement
operator plays an important role in their algorithm since it rearranges
the data to exploit the redundancy in the data due to the Kronecker
product. In their algorithm, the rearrangement of the data is done
first and then an SVD is applied on the rearranged data.

In this paper, we consider a different model than that considered
by Tsiligkaridis and Hero in [1]. Here we consider a signal-plus-
model where the latent low-rank signal-plus-noise matrix is modeled
as a Kronecker product of unstructured low-rank matrices. We pro-
pose four algorithms for estimating the Kronecker structured singu-
lar vector that utilizes the rearrangement operator in different ways.
We characterize the estimation performance of the associated sin-
gular vector estimate and bring into sharp focus a phase transition
phenomenon which separates a regime where the estimated singu-
lar vector is correlated with the latent singular vector from a regime
where the estimated singular vector is orthogonal to the latent sin-
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gular vector. Surprisingly, all four of the proposed algorithms fail at
exactly the same SNR.

Our performance analysis also reveals the best performance is
achieved by the algorithm which first computes the SVD and then
utilizes the Kronecker structure to effectively denoise the estimate.
Rearranging the data first to exploit the Kronecker structure results
in a performance loss.

The development of the algorithms and their associated perfor-
mance analysis is the primary contribution of this paper, which is
organized as follows. We describe the signal-plus-noise model in
Section 2, the rearrangement operator in Section 3 and summarize
the algorithms in Section 4. We analyze the performance in Section
5, illustrate it with numerical simulations in Section 6 and offer some
concluding remarks in Section 7.

2. SYSTEM MODEL

Consider the signal-plus-noise model

X = σ0 (a⊗ b)︸ ︷︷ ︸
:=u

sH + Z, (1)

where m = pq, X ∈ Cm×n is the observed data matrix, σ0 ∈
R+ is the signal-to-noise ratio (SNR). The vectors a ∈ Cp×1 and
b ∈ Cq×1 are unknown, non-random unit norm vectors and u =
a⊗ b ∈ Cm×1 is the unit-norm signal subspace basis vector, where
⊗ is the Kronecker product [3, Chapter 13]. The vector s ∈ Cn×1 ∼
CN (0, In) and Z is the noise-only matrix with i.i.d. zero mean, unit
variance entries with bounded higher order moments. Higher rank
extensions of the model in (1) are being investigated; their analysis
is beyond the scope of this paper. The model in (1) is motivated
by applications such as Moving Target Indicator (MTI) radar sys-
tem, where the space-time manifold vector associated with clutter at
normalized angular location θc has precisely the form [4, 5]

u(θc, fc) = a(fc)⊗ b(θc), (2)

where

b(θc) =
1
√
p

[
1 ej 2π θc . . . ej 2π (p−1) θc

]T
(3)

and

a(fc) =
1
√
q

[
1 ej 2π fd . . . ej 2π (q−1) fd

]T
. (4)

In (4), fd is the normalized Doppler shift induced by clutter relative
to the array boresight.

In the MTI application, the Space-Time Adaptive Processing
(STAP) filter [6], assuming σ0 is known, is computed as [7]

ŵ = (I + σ2
0 û û

H)−1 u(θt, ft), (5)
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where u(θt, ft) is the space-time vector associated with the target,
and has the same form as (2) and û is an estimate of u.

The left singular vector associated with the largest singular value
in the SVD ofX yields an estimate ûsvd of u which does not exploit
the Kronecker structure of the latent left singular vector. Our objec-
tive is to develop algorithm(s) that exploit the Kronecker structure of
the left singular vectors in (1) to improve the estimation of the vec-
tor u relative to ûsvd and to characterize the associated performance
loss(es) due to limited, noisy data.

3. REARRANGEMENT OPERATOR FOR KRONECKER
DECOMPOSITION

In this section, we define the rearrangement operator which will
be used extensively in the algorithms and is key to exploiting
the Kronecker structure. Assume that we have the matrix A ∈
Cpq×m1m2 = B ⊗ C, where B ∈ Cp×m1 and C ∈ Cq×m2 .
Furthermore, assume that A has a uniform blocking given by

A =


A11 . . . A1,m1

...
. . .

...
Ap,1 . . . Ap,m1

 , Aij ∈ Cq×m2 (6)

we have that [2]

||A−B ⊗ C||F = ||R(A)− vec(B) (vec(C))T ||F , (7)

where the vec(·) operation stacks the columns of its matrix argument
into a vector:

M ∈ Cl×m =⇒ vec(M) =
[
M(1 : l, 1) . . . M(1 : l,m)

]T
,

(8)
and

R(A) =


A1

...
Am1

 , Aj =


vec(A1,j)

T

...
vec(Aq,j)

T

 , j = 1 : m1. (9)

We will utilize (7) extensively in what follows.

4. NEW ALGORITHMS

Figure 1 summarizes the algorithms used to obtain û. We denote
the estimates ûsvd, ûkpca,1, ûkpca,2`, ûkpca,2r and ûkpca,3, since
they are based on the SVD, and four versions of ‘Kronecker PCA’s
of X , respectively. Note that the rearrangement operator features
prominently in the algorithms. ûsvd is the left singular value of X
corresponding to its largest singular value. Due to space constraints,
we describe only one Kronecker PCA algorithm (kpca, 2`). The
remaining algorithms may be interpreted using Figure 1 similarly.

In step 1 of Algorithm kpca, 2`, we apply the rearrangement
operator defined in (9) to X given by (1). Let the dimensions of the
rearrangement beR(X) : Cpq×n → Cp×qn. Upon rearrangement,

XR := R(X) = σ a vec
(
bsH

)T
+R(Z), (10)

where vec(·) operation is defined in (8), and we have used the fact
that vec(a) = a. Let

XR = σR â v̂
H (11)

be the SVD ofXR truncated to rank 1. Comparing (10) and (11), we
observe that we can use â to estimate a and the complex conjugate of
v̂, denoted v̂∗ to estimate vec(bsH). In step 2, we return âkpca,2` =
â in (11) as the estimate of a. In steps 3 and 4, we reshape v̂∗: since
v̂∗ ∈ Cqn is an estimate of vec(bsH), we may reshape it as

reshapeqn→q×n(v̂∗) =
[
v̂∗(1 : q) . . . v̂∗((n− 1)q + 1 : nq)

]
,

(12)
so that V̂ := reshapeqn→q×n(v̂∗) is an estimate of the matrix bsH .
In other words,

V̂ = bsH + ∆V̂ , (13)

where ∆V̂ is the error in estimating bsH . As suggested by (13), in
step 5, we return b̂kpca,2` = the left singular vector of V̂ correspond-
ing to its largest singular value, as the estimate of b. Finally, in step
6, we exploit the Kronecker structure of u in (1) and return as its
estimate

ûkpca,2` = âkpca,2` ⊗ b̂kpca,2`,
where âkpca,2` was estimated in step 2 and b̂kpca,2` in step 5 as de-
scribed above. The other algorithms can be derived in a similar man-
ner. Note that in kpca, 1 we first compute ûsvd and then apply the
SVD toR(ûsvd). The other algorithms apply the rearrangement op-
erator first and then compute the SVD(s).

5. PERFORMANCE ANALYSIS & LIMITS

We now provide a unified performance characterization of the vari-
ous KPCA algorithms.

Claim 1. Let X be modeled as in (1). Let ûsvd, ûkpca,1, ûkpca,2`,
ûkpca,2r , ûkpca,3 be estimates of u = a ⊗ b computed via the algo-
rithms in Figure 1. Then, we have that,

|〈ûsvd, u〉|2
a.s.−→ α2(σ0, csvd), (14a)

|〈ûkpca,1, u〉|2
a.s.−→ α2(σa,1, ca,1)β2(σb,1, cb,1) (14b)

|〈ûkpca,2`, u〉|2
a.s.−→ α2(σa,2`, ca,2`)α

2(σb,2`, cb,2`) (14c)

|〈ûkpca,2r, u〉|2
a.s.−→ α2(σa,2r, ca,2r)β

2(σb,2r, cb,2r) (14d)

|〈ûkpca,3, u〉|2
a.s.−→ α2(σa,3, ca,3)β2(σb,3, cb,3), (14e)

as p, q, n → ∞, pq/n → csvd, p/q → ca,1(= cb,1), p/(qn) →
ca,2`(= ca,3), pn/q → cb,2r(= cb,3), q/n → cb,2` and p/n →
ca,2r . Here,

α2(σ, c) :=

1− c(1 + σ2)

σ2(σ2 + c)
if σ0 > c

1/4
svd

0 otherwise
, (15a)

β2(σ, c) :=

1− (c+ σ2)

σ2(σ2 + 1)
if σ0 > c

1/4
svd

0 otherwise
. (15b)

The quantities σsvd, . . . , cb,3 in the arguments of the right hand side
(14) are given by the Table 1, in which

α2
svd := α2(σ0, csvd), β2

svd := β2(σ0, csvd).

Justification. Eq. (14a) may be shown rigorously by direct applica-
tion of [8, Theorem 2.10]. Eq. (14e) may be shown rigorously by
application of [8, Theorem 2.10] twice: to steps 2 and 4 of algorithm
5, which yield characterizations of |〈âkpca,3, a〉|2 and |〈̂bkpca,3, b〉|2,
and noting that (âkpca,3⊗b̂kpca,3)H(a⊗b) = (âHkpca,3a) (̂bHkpca,3b).
Equations (14b) to (14d) involve proof via assuming that the sample
singular vectors have a signal+noise structure, and will be presented
in the journal version of this paper.
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Alg. No. Description Algorithm Performance Terms

1 Singular Value Decomposition 1. ûsvd = largest left singular vector of X σ0, csvd = pq/n

1. ûsvd = largest left singular vector of X σa,1 =
√
α2
svd p/

√
1− α2

svd

2 Kronecker PCA (Version 1) 2. Usvd,R = Rpq×1→p×q(ûsvd) ca,1 = p/q

(kpca, 1) 3. âkpca,1 = largest left singular vector of Usvd,R σb,1 =
√
α2
svd p/

√
1− α2

svd

4. b̂kpca,1 = (largest right singular vector of Usvd,R)∗ cb,1 = p/q

5. ûkpca,1 = âkpca,1 ⊗ b̂kpca,1

1. XR = Rpq×n→p×qn(X)

2. âkpca,2` = largest left singular vector of XR σa,2` = σ0/
√
q

3 Kronecker PCA (Version 2`) 3. v̂ = largest right singular vector of XR ca,2` = p/(qn)

(kpca, 2`) 4. V̂ = reshapeqn→q×n(v̂
∗) σb,2` =

√
β2
svd q/

√
1− β2

svd

5. b̂kpca,2` = largest left singular vector of V̂ cb,2` = q/n

6. ûkpca,2` = âkpca,2` ⊗ b̂kpca,2`

1. XR′ = Rpq×n→pn×q(X)

2. b̂kpca,2r = (largest right singular vector of XR′)∗ σa,2r =
√
α2
svd p/

√
1− α2

svd

4 Kronecker PCA (Version 2r) 3. û = largest left singular vector of XR′ ca,2r = p/n

(kpca, 2r) 4. Û = reshapepn→p×n(û) σb,2r = σ0
√
n/
√
q

5. âkpca,2r = largest left singular vector of Û cb,2r = pn/q

6. ûkpca,2r = âkpca,2r ⊗ b̂kpca,2r

1. XR = Rpq×n→p×qn(X) σa,3 = σ0/
√
p

2. âkpca,3 = largest left singular vector of XR ca,3 = p/(qn)

5 Kronecker PCA (Version 3) 3. XR′ = Rpq×n→pn×q(X) σb,3 = σ0
√
n/
√
q

(kpca, 3) 4. b̂kpca,3 = (largest right singular vector of XR′)∗ cb,3 = pn/q

5. ûkpca,3 = âkpca,3 ⊗ b̂kpca,3

1

Table 1: Algorithms for estimating u in (1). Largest left/right singular vector means the left/right singular vector corresponding to the
largest singular value. R(X) rearranges X using the rearrangement operator defined in (9). Where required, we have made rearrangement
dimensions explicit e.g.,Rpq×n→p×qn takes a matrix of dimensions pq × n and returns a matrix of dimensions p× qn. reshapeqn→q×n(·)
is defined in (12). Superscript ∗ stands for ‘complex conjugate of’.

6. NUMERICAL SIMULATIONS
Figure 1 plots the inner-product-squared accuracy, |〈û, u〉|2, where
û is estimated using all the algorithms in Table 1 (i.e. û =
{ûsvd, ûkpca,1, ûkpca,2`, ûkpca,2r, ûkpca,3}) versus SNR σ0, for
a system with p = 15, q = 15 and n = 200 (i.e. sample defi-
cient regime). The empirical points were computed over 104 Monte
Carlo simulations, by generating data via (1) and implementing
algorithms as in Table 1. The theoretical curves were plotted using
the theoretical expressions given by (14), and the agreement with
experimental data in the plot validates these theoretical expressions.
In Figure 2, we plot the logarithm of the empirical inner-product-
squared accuracy for Algorithm (kpca, 2`), over 5000 trials, for
different values of SNR σ0 and aspect ratios csvd = (pq/n). The
plot highlights a phase transition in algorithm performance which
separates a regime where û returned by the algorithms is accurate
(red) from a regime where the the performance breaks down (blue).
The line corresponding to σcrit plots this phase transition bound-
ary predicted by the theoretical expressions in (14), and accurately
predicts the empirically observed boundary.

Finally we considered the MTI application to illustrate the im-
provement in performance relative to the SVD for the estimation
of STAP filters, given by (5). Using (3) and (4), we simulated a
system with q = 15 sensors in a uniform linear array spaced half

wavelength (0.5× 0.67m) apart, which emits p = 15 pulses in one
coherent pulse interval. The target was chosen to be broadside to
the array (θt = 0) and induce normalized Doppler shift ft = 0. A
single clutter was located at 30o, and induced normalized Doppler
shift fc = 0.0995 units at the array. In this application, σ0 in (1) has
the interpretation of clutter-to-noise ratio (CNR). The goal of STAP
is to suppress clutter. Figure 3 shows the improvement in clutter
suppression when we use the KPCA based algorithms to estimate û
against using only the SVD, We plot the filter output power at clutter
location and Doppler frequency, (θc, fc) over different CNRs, and
we see that all KPCA based algorithms suppress clutter more than
regular SVD, by about 10 dB. In Figure 4, we plot the beampatterns
of the array, for ŵ in (5) was derived using SVD and kpca, 2` and
compare their performance to the optimum filter which uses the true
Σ. As expected the new algorithm(s) outperform the SVD. In all
simulations, we see that the (kpca, 1) outperforms the other KPCA
variants as predicted by the theory.

7. CONCLUSIONS
We proposed four algorithms for estimating singular vectors with
Kronecker product structure, analyzed their performance and showed
that they all failed below the same SNR. Our analysis revealed that
the algorithm which first computed the SVD and then exploited the
Kronecker structure performed the best.
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