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ABSTRACT that the noise is bounded in magnitude. Another populas@é&al-

. . gorithms used for sparse recovery constitute the greedypappes
In this wprk, we address the recovery o_f sparse_and c_ombie55| such as Matching Pursuit (MP) [6], Orthogonal MP (OMP) [7],
vectors in the presence of colored noise possibly with a-rank- gamp [8], etc. These algorithms are oblivious to the strme
deficient noise covariance matrix, from overcomplete ndiisgar ¢ iha noise. and hence. are not designed to exploit the kpoom
measurements. We e}xplmt thekstructure_oflthe noise cauzmah erties of the noise covariance matrix. On the other hande&iap
matrix in a Bay_e5|an ramework. In particular, we propose t approaches are capable of elegantly incorporating thetatesin
CoNo-SBL algorithm based on the popular and efficient Sparsey,q ngise covariance matrix into the problem of sparse rEgov
Bayesian Learning (SBL) technique. We also derive Bayesf@h ever, the algorithms proposed in the Bayesian frameutuk
Marginalized Cramér Rao lower Bounds (CRB) for the probkem far [4,9,10] are based on the AWGN model.

estimgting compressible vectors. We conside( an unknowm 0 In order to cater to specific applications, extensions obtmc
pre_ssmle vector drawn from a Studenprior distribution, and %S and greedy approaches have been probosed for struchised n
derive CRBS that encompass the random nature of the unknOWscenarios. For e.g., in [11], the authors consider the profaf esti-

compressible vector and the parameters of the prior digtob, in ) . .
P e v P pri ! mating a UWB channel impulse response in the presence afezblo

the presence of colored noise and rank-deficient noise ieowar ’ - ;

matrix. Using Monte Carlo simulations, we demonstrate ffieazy noise and propose a Matching P_urswt (MP) approach_. In_l.h@],
of the proposed CoNo-SBL algorithm as compared to comprﬂesse‘r’lumOrs consider the_colored noise du_e to noise fo_Idmg inash
sensing and greedy techniques. Further, we demonstrateehe spectrum based receivers. Such tec_hnlques pre-w.h'l'terbﬁawa-
squared error performance of the proposed estimator camar tions prior to sparse signal recovery instead of expliditorporat-

the CRBs, for different ranks of the noise covariance matrix ing the noise struF:ture into the sparse rgcovery formulano
In the Bayesian framework, a family of techniques known as

[Index Terms— Sparse Bayesian learning, colored noise, rank-gparse Bayesian Learning (SBL) has been developed to fingtrob
deficient noise covariance matrix, expectation maximmgtCramer  gq|tions to the sparse signal recovery problems. A featfiteese
Rao lower bounds algorithms is that it is simple to incorporate the structanel cor-
relation constraints inherent to the sparse vector [13, 14]this
work, we demonstrate that it is possible to incorporate thaer
lying noise structure in the SBL framework. Specifically, thre
SBL framework, we model the prior distribution on the sparse-
tor x asx ~ N(0,T), wherel' = diag(~(1),...,v(N)) repre-
sents the unknown hyperparameters. Further, we model tke as
n ~ N (0, Q), whereQ is the noise covariance matrix. The results
presented in this paper address the following:

1. INTRODUCTION

Recently, the problem of sparse signal recovery has reteine
mense interest as it enjoys numerous applications in sigral
cessing and machine learning. Compressed Sensing (CShdl] a
Bayesian techniques [2—4] have been proposed for obtarpimgst
solutions to the problem of sparse recovery, which involess-
mating a sparse vecter € R™V>! from an overcomplete system of

linear equations given by 1. Colored noise: Typically, in distributed sensor netwapkli-

cations, every sensor has a set of measurements of a sparse
signal, and the goal is to recover the signal from their col-
lective measurements at a minimal communication cost and

y = ®x+n, (1)

where® ¢ R™*¥ (m << N) represents the overcomplete basis,
andy € R™*! represents the observations. In the conventional
sparse recovery framework [1, 2], the ambient naises R™**
is distributed am ~ A(0,0°L,), i.e., n is modeled as Additive
White Gaussian Noise (AWGN). However, in real-world scérsar
we often encounter situations where the naises not white, i.e.,
E[nn"] = Q, andQ is a non-negative definite matrix.

Among the existing recovery methods, the ones based on CS
such as Basis Pursuit Denoising (BPDN), LASSO [5] etc., m&su
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low computational complexity. Since the observations &t va
ious sensors experience an ambient noise of different noise
variance [15], one essentially deals with a sparse recovery
problem wherdQ is diagonal, but consists of unequal values
along the diagonal.

2. Low-rank noise covariance matrix: In [16, 17], the aughor
consider a problem of recovering sparse signals from under-
sampled measurements corrupted by very large but cordelate
noise. Such scenarios are often encountered in real-time
video surveillance and layering [18]. Note that our frame-
work can handle such scenarios by considergto be
low-rank and with nonzero off diagonal entries.
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1.1. Problem Statement and Contributions

In this section, we describe the problem addressed and titei-co
butions of this work. The sparse recovery problem given hyéh
be generalized to the several scenarios listed in the pre\dection
by consideringQ to be a colored covariance matrix. We expre€ss
using the eigenvalue decomposition, as follows:

Q=VAV", )

whereV € R™*™ consists ofm orthonormal columns, and is
a diagonal matrix consisting of eigenvalues@f In the case when
Q is full-rank, A has nonzero diagonal entries. Whénis rank-
deficient, it can be written as

D
Om—po
wherep is the rank ofQ, 0, represents @ x m matrix of zeros,
andD is a diagonal matrix consisting of thenonzero eigenvalues
of Q. This leads to a system of linear equations given by

Vi
Vi

Opxm—p

Q= [V1V3] ] )

Om—pxm—p

y1=®1x+m
(4)

Here, the observationg are projected onto two orthogonal sub-
spaces, such that in one of the subspaces the measurensembésar
and drawn from a Gaussian distribution governed by a didgma
variance matrix, while in the other subspace, the measurenaee
noiseless. Accordingly; = V¥y and®, = V¥'®, and on simi-
lar lines,y2 = Viy and®, = V1 &®. Note that sincer, = V7 n,
E[nin{] = D and similarly sincens = V3 n, E[noni] = 0,,_.

Y2 = ®2X+ ns.

In this work, we propose an Expectation Maximization (EM)

based CoNo-SBL algorithm for recoverysfarse andcompressible
vectors in the presence of correlated noise, which may bedok
or rank-deficient. We demonstrate that Mean Squared Err&GEM
performance of the proposed CoNo-SBL estimator is sup&i@S

In the prior density given in (5), the hyperparametgire unknown,
and can be estimated using the type-Il Maximum Likelihood.\M
procedure [20], i.e., by maximizing the marginalized p¢lf; v) as

Aumr = argmax p(y; ). (6)
yery !

Since the above problem cannot be solved in closed form, it-
erative estimators such as the EM algorithm is employed. The
sparse/compressible vectaris considered as the hidden variable
and the ML estimate of is obtained in the M-step. The steps of the
algorithm can be given as

@)
®)

E-step: Q (7\7“)) =By r log p(y, x;7)]
M-step: "V = arg max Q (*y\’y(r)) .
yery x!

The E-step above involves computation of the posterioritlen$

x, where the hyperparametets = ~(", i.e., in order to obtain
the posterior distribution in thér + 1) iteration, we utilize the
hyperparameter update obtained in the M-step of/fhéteration.

Accordingly, the posterior density of can be expressed as

P <XIy; 7(”) =N(p, %), 9)

—1
whereX = '™ — ("M &T (Q + <I>F<’"><I>T> &1 andp =
»®TQ~'y. The M-step in (8) can be simplified, to obtain

"D (i) = arg max E, o [log p(x; )] (10)

y()ERL

=Eyyyn [[2@0)F] = S(,4) + [u(@)*.  (12)

based LASSO and greedy methods such as OMP. Further, we deriln (10), the terniE_, . [log p(y[x; )] has been dropped, as it is

Crameér Rao type bounds assuming that the vecierdrawn from a
compressible Studentprior distribution. In particular, for the esti-
mation problem stated in this paper, Bayesian (B) and Matigied

not a function ofy(z). Note that, since all the algorithms proposed in
this paper use EM updates, they have monotonicity propestythe
likelihood is guaranteed to increase at each iteratiorgf2]t} In the

(M) Cramér Rao Bounds (CRB) [19] are derived to obtain lowercase of rank-deficient matri®, it is necessary that we derive EM
bounds on the MSE performance of the proposed estimaton-by i based update equations considering the zero eigenvalugisess
corporating the prior distribution or and correlation structure in in (3). In order to derive the update equations accomoddting
Q. We demonstrate while MCRB is tighter than the BCRB, the per+ank-deficient noise covariance matrix, we start with theeotation

formance of the proposed estimator is jastB away from MCRB.
WhenQ is rank deficient, with rank < m, it is equivalent to hav-

ing p noisy andm — p noiseless measurements. To the best of our

knowledge, the problem of sparse signal recovery with a éGoab
tion of noisy and noiseless measurements has not been ecetsich
the literature.

In the following section, we present our proposed algoritbm
recovering a sparse vector from noisy linear measuremgmtthe
case when the noise covariance ma@ixs colored, and in particular
for the case wheR) is colored and rank-deficient.

2. PROPOSED ALGORITHMS

In this section, we propose the CoNo-SBL algorithm for tleowery
of sparse/compressible vectors in the presence of a nagédied

asn ~ N(0, Q) for the observation model given by (1). The con-

ventional SBL framework [9] uses a parameterized prior thuge
sparsity in the solution, given by

N

p(xs) = [[2m(0) " exp (

i=1

_lz(@)P

7(7) ©)
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model (4) and considef = ®x + i, wherey = [y{y1]", & =
[@7®3]" andh ~ N(0, A) with A as defined in (2) and (3).

In the case wheQ is rank-deficient, we first IeE[nsnl] =
031,,—,. The EM updates then take the form

2 2
>3 @ZBnm¢m> rel. o (12)

m=1n=1

> — F(T) _ F(T) (

where
Bu B | [D+eir"e, & rMel !
Bay Ba | &, eT 03,y + BTN BT :

13)

Also, we havgy = Z®TD 'y + 0, 221y,
Applying 05 — 0, using straightforward block matrix inver-
sion rules [23] and the identitym; .0 AT (AAT +61p)" ' = A,

1We have found, empirically, that a straightforward initiation such as
'(®) = I, leads to accurate solutions.



where AT represents the Moore-Penrose pseudo-inversa of
RP*E [24], we obtain the following expression f&t:

1 1 1
=170 _1"2eTB,,0,r"* —1"*elU,0,r":

+1"207%,'6,01U,0,1"2 + 1M2010,07B,,0,1")2.
(14)

whereB1; = (2, — ©,0/0,01)7, =, = (D + & I'"&7]),

1 @11—‘(”% , 05 = ‘I>2F<T)%, andU; = Im7p+®2®?B11®1@;

Further, using the identitiims ,o(ATA 4 61,) AT = AT, the
posterior mean is given as

1 1 .
p=38"D 'y, + 1V3UZ(0,UF)ys, (15)

whereU, = (Ix + ©7D7'©;)7!. Since®@{D~ 'O, is rank-
deficient,U> can be found using thg&herman-Morrison-Woodbury
update as

U, =Iy—07%;'0,. (16)
Thus, the final EM updates evaludeandy iteratively using above

expressions until convergence. The steps are summariz&ldjon
rithm 1.

Algorithm 1 CoNo-SBL Algorithm
1: Initialize I" < Iy,
2: while (N"*+Y — 1) < 107° or r < 300 do
I > r® r":e7B,;0,1"M2
rmz:eiu,0,rM: + rMze7x.'0,05U,0,1"M2
r":00,07B110,I'"?
p=38D 'y, + TVIUS (0:,U5)'ys,
SRR TR
(r)« (r+1)
7: end while
8: Outputpe

o g &

Proposition 1 For the signal model in (4) with noise covariance
matrix Q, the BCRB on the MSE matrix E¢ of the unknown ran-
dom vector 8 = [x7,~T]T, where the conditional distribution of
the compressible signal x|v is N (0,T"), and the hyperprior distri-
butionon~ is[[Y., ZG (%, %), isgiven by E® = (B?)~*, where

v v

312X
Bo 2 { B’(x) Be(x,’y)}
B°(x,7)"  B(v)
(L, — A + &37)B7 0
_ |5 (A + )@") oo | g
OnxN Iy

Proof: Using the definitions in [26]B® (x) can be computed as

B’(x) 2 -Evyxr|[Vilogp(y.x;v)]

—-Ev x,r [Vx <<i>TA_1(y — ‘i’x) — F_1x>]
®'AT'® 4+ Er [I7]
STAT'D + AIy.

(19)

However, note that in the case whé@nis rank-deficient,A is not
invertible. In this case(B? (x)) ™! can be expressed as

| —

Bx)' L (I, — 2OA + 337)B7). (20)

A

Further,B? (x,~) andB® () remains the same as in [26]. W
Itis known that the MCRB is the lower bound to the BCRB [26].

In the following subsection, we derive the MCRB by marginalg

~ from the joint distribution ofk and-y.

3.2. MCRB for 6 = [v]

In this subsection, we consider an IG hyperpriorpas in the con-
ventional SBL framework. Effectively, this leads to a coegsible
vectorx with a Student distribution. Such bounds have been de-
rived in [26] where the authors obtain MCRB for vectors satpl

In the following section, we derive lower bounds on the MSE from a Student- distribution with parameters and A, i.e., av-

performance of CoNo-SBL estimator.
3. CRAMER RAO TYPE BOUNDS: BCRB AND MCRB

In this section, we derive Bayesian and marginalized CraR&®

type lower bounds (BCRB and MCRB) for the system in (4), where

the unknown vector is given b§ = [x7,~7]T and the signak
is drawn from a compressible prior distribution [25]. We rabthe
sparse vector as being random ands being random or marginal-
ized [26]. However, in contrast to [26], we derive the loweuhds
in the presence of noise with a general covariance mejrix

3.1. BCRBfor6 = [x”,~7]"

In this subsection, we consider the unknown veétet [x”,~7]7,
where the compressible vecteiis distributed according to a Gaus-
sian distribution parameterized by For deriving the BCRB, a hy-
perprior distribution is considered op, and, as a result, the vec-
tor x is drawn from a compressible prior distribution. We con-
sider the Inverse Gamma (IG) hyperprior distribution [20here,
vi,i=1,2,..., N are distributed agg (%, 2 ). The IG distribu-

tion is given by oA
p(vi) = <F <§)>_1 (%)% ’Yi(_%_l) OXp{*M% }7 a7)

wherev; € (0,00), v, A > 0. From the definition of the BCRB,
we state the following proposition.

14
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compressiblex [25]. The Student-prior is given by
_(wtD
) 2

(“55™) ( .

wherez; € (—o0,00), v, A > 0, andv represents the number of
degrees of freedom andrepresents the inverse variance of the dis-
tribution. Accordingly, we state the following theorem feriving
the MCRB.

N N

Rie

i=1

A

TV

2
Axs

v

I((v+1)/2)
I'(s)

L

p(x)

Proposition 2 For the signal model in (4), the MCRB on the MSE
matrix E* of the unknown compressible random vector 8 = [x]
distributed as (21), is given by E* > (M*)~!, where

Proof: Omitted due to lack of space; but the proof follows along the
lines of Proposition 1 and [26]. |

4. SIMULATION RESULTS

_ w43

()™ Av+1)

A+ <i><i>T> i)T)(zz)

In this section, we illustrate the Mean Squared Error (MS&) p
formance of the proposed CoNo-SBL algorithm and compare it
with existing methods. We also compare against the Cramaer R



type bounds derived in Sec. 3. We generaté-sparse vector

leads to significant MSE improvements, and the sparse sigimabe

x € RY, whose nonzero entries are i.i.d. according to an equiprobrecovered with an MSE in the order o —2.

able Bernoulli ¢(i) € {+1,—1}) distribution. In each trial, the

In Fig. 1(b), we demonstrate the MSE performance of the CoNo-

measurement matriXp is generated as a random overcompleteSBL algorithm as a function of the rank Again, we observe that,

matrix, whose entries are i.i.d. and standard Gaussianhdittd
and the columns are normalized to have unit euclidean nore T
experiment is repeated fdi000 trials. The noisy measurements
are corrupted by white noise with known noise variance We
considerN = 100 andk = 10, m represents the number of mea-
surements ang the rank of the noise covariance matrix. We fix
the number of iterations of the proposed algorithn8@0 and the
convergence criterion is given By — T ||> < 1076,

4.1. CoNo-SBL Algorithm

In this section, we simulate the proposed CoNo-SBL algorjtand
compare its performance with OMP [7], and the convex opttan
based approach known as LASSO [5].

+m=8k,p=m
x m=6k p=0.7m
o m=6k p=0.1m

solid(black) :1-1
10 dotted(red) : OMP
10 | dashed(blue) : CoNo-SBL
D mmmm s B ity B ECEEREEEE <
-15| . .
10 10 15 20 25

SNR(dB)

(a) MSE vs. SNR for differenp andm

.0-0-0 PR

a-e BB o lid(black) -1
dotted(red) : OMP
dashed(blue) : CoNo-SBL

20 20

-15

10 3‘0 4‘0 50 60 70
rank(p)

(b) MSE vs.p for differentm, with SNR= 10dB

Fig. 1. Comparison of the MSE performance of the CoNo-SBL with

OMP [7] and LASSO [5].

compared to OMP and LASSO, the CoNo-SBL algorithm utilizes
the rank-deficient structure €} effectively, leading to a better MSE
performance. We note that there is an interesting tradesffidsen

the number of measurements and the rank)ofwhen the rank of

Q is low, fewer measurements suffice to achieve the same MSE. Fo
instance, the MSE of CoNo-SBL algorithm with = 60 andp =
0.7m is better than the MSE withh = 80 andp = m.

4.2. Cramér Rao type bounds

In Fig. 2, we compare the performance of the proposed CoNo-SB
algorithm for recovering a compressible vectgrwith the Cramér
Rao type bounds derived in Sec. 3. Specifically, we consider a
IG hyperprior distribution of” and a conditional Gaussian distribu-
tion onx, parameterized by'. Hence, the resulting compressible
signal is viewed as being drawn from Studeémtistribution, which

is compressible [25]. We consider the parameters of therpyipe
given byr = 2.05 and A\ = 2000 [26]. The figure compares the
performance of CoNo-SBL algorithm as a function of rapkfor
different values ofn, with the MCRB and the BCRB given in (22)
and (18), respectively. First, note that MCRB is tighter pamned to
BCRB [26]. However, a more interesting point, which has belen
served empirically but is not shown in the plot to avoid @uis that

a slight rank deficiency in the noise covariance mafjiis sufficient

to get a considerable improvement in the MSE performancee No
that rank deficiency leads to a system model given by (4), nco
passing a few noiseless measurements which results in ificagh
improvement in the recovery performance when the recovigiy- a
rithm explicitly accounts for the known noise statistics.

10°

solid(black) : m = 6k O CoNo-SBL
dashed(red) : m =9k o MCRB
* BCRB
107t
coo—"°
o) o a
= -
§3 o g
102t @o--g-----" R  CEEEEEEE R
Pl EEEEE R e LR LT
10’3 L L L
0 5 10 15 20
rank(p)

Fig. 2. MSE of the proposed CoNo-SBL technique compared to
BCRB and MCRB as a function of rankof Q for differentm.

5. CONCLUSIONS
In this work, we proposed a novel CoNo-SBL algorithm for re-
covery of sparse and compressible signals contaminatedlbyed

The MSE performance of the CoNo-SBL algorithm across SNRhoise with a rank-deficient noise covariance matrix. We stbw

for different values op, the rank of the noise covariance maté
is depicted in Fig. 1(a). We observe that the MSE performavteean

that the rank-deficient structure of the noise covarianceixiaads
to noiseless measurements, which can be utilized to impttoze

as little as10% of the measurements are noiseless is markedly suUMSE performance as compared to the existing methods. Inathe ¢
perior to the case when all the measurements are noisy. ugtho text of compressible signal estimation, we derived the Beyeand
similar behavior is observed with OMP and LASSO, the prodose marginalized CRB for the case where the noise covariancexnist
CoNo-SBL algorithm has a superior performance comparetigo t rank-deficient. We saw that MCRB is tighter than BCRB, and tha

other schemes as it is able to exploit the structure in theencod-

variance matrix. Interestingly, in the case of CoNo-SBLoailipm,

the performance of the CoNo-SBL algorithm is close to the BCR
Future work could extend the CoNo-SBL algorithm to perfoaini

we see that even at low SNR, having a few noiseless measutemersparse vector recovery and noise covariance matrix estimat

3764



(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

6. REFERENCES

D. L. Donoho, “Compressed sensindEEE Trans. Inf. The-
ory, vol. 52, no. 4, pp. 1289-1306, 2006.

M. E. Tipping, “The relevance vector machine,” Atvances
inNIPS, vol. 12, 2000.

S. Babacan, R. Molina, and A. Katsaggelos, “Bayesian-com
pressive sensing using Laplace prior8ZEE Trans. Image
Process,, vol. 19, pp. 53-64, 2010.

S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sepsin
|IEEE Trans. Sgnal Process., vol. 56, no. 6, pp. 2346—2356,
2008.

R. Tibshirani, “Regression shrinkage and selection tia
LASSO,” Journal of the Royal Satistical Society. Series B
(Methodological), pp. 267—288, 1996.

S. G. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries'/EEE Trans. Sgnal Process,, vol. 41,
no. 12, pp. 3397-3415, 1993.

J. A. Tropp and A. C. Gilbert, “Signal recovery from ramdo
measurements via orthogonal matching pursuEE Trans.
Inf. Theory, vol. 53, no. 12, pp. 4655-4666, 2007.

D. Needell and J. A. Tropp, “Cosamp: Iterative signaloesry
fromincomplete and inaccurate samplespplied and Compu-
tational Harmonic Analysis, vol. 26, no. 3, pp. 301-321, 2009.

D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for ba-
sis selection,1EEE Trans. Sgnal Process., vol. 52, no. 8, pp.
2153-2164, 2004.

P. Schniter, L. C. Potter, and J. Ziniel, “Fast Bayestatching
pursuit,” inInfo. Th. and Appli. Workshop, 2008, pp. 326—333.

M. Al Atassi and I. Abou-Faycal, “A reconstruction alggm
for noisy compressed sensing; the UWB channel estimation
test case,” irintl. Conf. on Telecom., 2012, pp. 1-6.

(24]

K. Fyhn, T. L. Jensen, T. Larsen, and S. H. Jensen, “Com-
pressive sensing for spread spectrum receivéEEE Trans.
Wireless Commun., vol. 12, no. 5, pp. 2334-2343, 2013.

R. Prasad, C. Murthy, and B. D. Rao, “Nested sparse Bayes
learning for block-sparse signals with intra-block caatin,”
in Proc. ICASSP, 2010, pp. 1-6.

Z. Zhang and B. Rao, “Extension of SBL algorithms for the
recovery of block sparse signals with intra-block coriielat
|EEE Trans. Sgnal Process,, vol. 61, no. 8, pp. 2009-2015,
2013.

S. Patterson, Y. C. Eldar, and |. Keidar, “Distributquhsse
signal recovery for sensor networks,” Rmoc. ICASSP, 2013,
pp. 4494-4498.

C. Qiu and N. Vaswani, “Recursive sparse recovery igddut
correlated noise,” ifProc. Allerton Conf. on Commun., Control
and Comput., 2011, pp. 752-759.

C. Qiu, N. Vaswani, and L. Hogben, “Recursive robust PCA
or recursive sparse recovery in large but structured riaise,
Proc. ICASSP, 2013, pp. 5954-5958.

T. Bouwmans and E. H. Zahzah, “Robust PCA via principal
component pursuit: A review for a comparative evaluation in
video surveillance,Computer Vision and Image Understand-

ing, vol. 122, pp. 22-34, 2014.

3765

(22]

(23]

(25]

(26]

[19] H. V. Trees,Detection, Estimation, and Modulation Theory -

Part]. New York: Wiley, 1968, vol. 2.

[20] M. E. Tipping, “Sparse Bayesian learning and the reteea

vector machine,”Journal of Machine Learning Research,
vol. 1, pp. 211-214, 2001.

[21] C. Wu, “On the convergence properties of the EM algonith

The Annals of Satistics, vol. 11, no. 1, pp. 95-103, 1983.

G. McLachlan and T. Krishnarfhe EM algorithm and exten-
sions. Wiley New York, 1997, vol. 274.

K. Petersen and M. Pedersen, “The matrix cookboGkyine:
http: //matrixcookbook.com, 2008.

G. H. Golub and C. F. van Van LoaMatrix computations
(Johns Hopkins studies in mathematical sciences). The Johns
Hopkins University Press, 1996.

V. Cevher, “Learning with compressible priorgytivances in
NIPS pp. 7-12, 2008.

P. Ranjitha and C. R. Murthy, “Cramér-Rao-type bounds
for sparse Bayesian learningl[EEE Trans. Sgnal Process.,
vol. 61, no. 3, pp. 622—632, 2013.



