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ABSTRACT

In this work, we address the recovery of sparse and compressible
vectors in the presence of colored noise possibly with a rank-
deficient noise covariance matrix, from overcomplete noisylinear
measurements. We exploit the structure of the noise covariance
matrix in a Bayesian framework. In particular, we propose the
CoNo-SBL algorithm based on the popular and efficient Sparse
Bayesian Learning (SBL) technique. We also derive Bayesianand
Marginalized Cramér Rao lower Bounds (CRB) for the problemof
estimating compressible vectors. We consider an unknown com-
pressible vector drawn from a Student-t prior distribution, and
derive CRBs that encompass the random nature of the unknown
compressible vector and the parameters of the prior distribution, in
the presence of colored noise and rank-deficient noise covariance
matrix. Using Monte Carlo simulations, we demonstrate the efficacy
of the proposed CoNo-SBL algorithm as compared to compressed
sensing and greedy techniques. Further, we demonstrate themean
squared error performance of the proposed estimator compared to
the CRBs, for different ranks of the noise covariance matrix.

Index Terms— Sparse Bayesian learning, colored noise, rank-
deficient noise covariance matrix, expectation maximization, Cramér
Rao lower bounds

1. INTRODUCTION

Recently, the problem of sparse signal recovery has received im-
mense interest as it enjoys numerous applications in signalpro-
cessing and machine learning. Compressed Sensing (CS) [1] and
Bayesian techniques [2–4] have been proposed for obtainingrobust
solutions to the problem of sparse recovery, which involvesesti-
mating a sparse vectorx ∈ R

N×1 from an overcomplete system of
linear equations given by

y = Φx+ n, (1)

whereΦ ∈ R
m×N (m << N ) represents the overcomplete basis,

andy ∈ R
m×1 represents the observations. In the conventional

sparse recovery framework [1, 2], the ambient noisen ∈ R
m×1

is distributed asn ∼ N (0, σ2Im), i.e.,n is modeled as Additive
White Gaussian Noise (AWGN). However, in real-world scenarios,
we often encounter situations where the noisen is not white, i.e.,
E[nnT ] = Q, andQ is a non-negative definite matrix.

Among the existing recovery methods, the ones based on CS
such as Basis Pursuit Denoising (BPDN), LASSO [5] etc., assume
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that the noise is bounded in magnitude. Another popular class of al-
gorithms used for sparse recovery constitute the greedy approaches
such as Matching Pursuit (MP) [6], Orthogonal MP (OMP) [7],
CoSAMP [8], etc. These algorithms are oblivious to the structure
of the noise, and hence, are not designed to exploit the knownprop-
erties of the noise covariance matrix. On the other hand, Bayesian
approaches are capable of elegantly incorporating the structure in
the noise covariance matrix into the problem of sparse recovery.
However, the algorithms proposed in the Bayesian frameworkthus
far [4, 9,10] are based on the AWGN model.

In order to cater to specific applications, extensions of thebasic
CS and greedy approaches have been proposed for structured noise
scenarios. For e.g., in [11], the authors consider the problem of esti-
mating a UWB channel impulse response in the presence of colored
noise and propose a Matching Pursuit (MP) approach. In [12],the
authors consider the colored noise due to noise folding in spread
spectrum based receivers. Such techniques pre-whiten the observa-
tions prior to sparse signal recovery instead of explicitlyincorporat-
ing the noise structure into the sparse recovery formulation.

In the Bayesian framework, a family of techniques known as
Sparse Bayesian Learning (SBL) has been developed to find robust
solutions to the sparse signal recovery problems. A featureof these
algorithms is that it is simple to incorporate the structureand cor-
relation constraints inherent to the sparse vector [13, 14]. In this
work, we demonstrate that it is possible to incorporate the under-
lying noise structure in the SBL framework. Specifically, inthe
SBL framework, we model the prior distribution on the sparsevec-
tor x asx ∼ N (0,Γ), whereΓ = diag(γ(1), . . . , γ(N)) repre-
sents the unknown hyperparameters. Further, we model the noise as
n ∼ N (0,Q), whereQ is the noise covariance matrix. The results
presented in this paper address the following:

1. Colored noise: Typically, in distributed sensor networkappli-
cations, every sensor has a set of measurements of a sparse
signal, and the goal is to recover the signal from their col-
lective measurements at a minimal communication cost and
low computational complexity. Since the observations at var-
ious sensors experience an ambient noise of different noise
variance [15], one essentially deals with a sparse recovery
problem whereQ is diagonal, but consists of unequal values
along the diagonal.

2. Low-rank noise covariance matrix: In [16, 17], the authors
consider a problem of recovering sparse signals from under-
sampled measurements corrupted by very large but correlated
noise. Such scenarios are often encountered in real-time
video surveillance and layering [18]. Note that our frame-
work can handle such scenarios by consideringQ to be
low-rank and with nonzero off diagonal entries.
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1.1. Problem Statement and Contributions

In this section, we describe the problem addressed and the contri-
butions of this work. The sparse recovery problem given by (1) can
be generalized to the several scenarios listed in the previous section
by consideringQ to be a colored covariance matrix. We expressQ

using the eigenvalue decomposition, as follows:

Q = VΛV
T , (2)

whereV ∈ R
m×m consists ofm orthonormal columns, andΛ is

a diagonal matrix consisting of eigenvalues ofQ. In the case when
Q is full-rank, Λ has nonzero diagonal entries. WhenQ is rank-
deficient, it can be written as

Q = [V1V2]

[

D 0p×m−p

0m−p×p 0m−p×m−p

] [

VT
1

VT
2

]

, (3)

wherep is the rank ofQ, 0p×m represents ap×m matrix of zeros,
andD is a diagonal matrix consisting of thep nonzero eigenvalues
of Q. This leads to a system of linear equations given by

y1 = Φ1x+ n1

y2 = Φ2x+ n2. (4)

Here, the observationsy are projected onto two orthogonal sub-
spaces, such that in one of the subspaces the measurements are noisy
and drawn from a Gaussian distribution governed by a diagonal co-
variance matrix, while in the other subspace, the measurements are
noiseless. Accordingly,y1 = VT

1 y andΦ1 = VT
1 Φ, and on simi-

lar lines,y2 = VT
2 y andΦ2 = VT

2 Φ. Note that sincen1 = VT
1 n,

E[n1n
T
1 ] = D and similarly sincen2 = VT

2 n, E[n2n
T
2 ] = 0m−p.

In this work, we propose an Expectation Maximization (EM)
based CoNo-SBL algorithm for recovery ofsparse andcompressible
vectors in the presence of correlated noise, which may be full-rank
or rank-deficient. We demonstrate that Mean Squared Error (MSE)
performance of the proposed CoNo-SBL estimator is superiorto CS
based LASSO and greedy methods such as OMP. Further, we derive
Cramér Rao type bounds assuming that the vectorx is drawn from a
compressible Student-t prior distribution. In particular, for the esti-
mation problem stated in this paper, Bayesian (B) and Marginalized
(M) Cramér Rao Bounds (CRB) [19] are derived to obtain lower
bounds on the MSE performance of the proposed estimator, by in-
corporating the prior distribution onx and correlation structure in
Q. We demonstrate while MCRB is tighter than the BCRB, the per-
formance of the proposed estimator is just3 dB away from MCRB.
WhenQ is rank deficient, with rankp < m, it is equivalent to hav-
ing p noisy andm − p noiseless measurements. To the best of our
knowledge, the problem of sparse signal recovery with a combina-
tion of noisy and noiseless measurements has not been considered in
the literature.

In the following section, we present our proposed algorithmfor
recovering a sparse vector from noisy linear measurements,for the
case when the noise covariance matrixQ is colored, and in particular
for the case whenQ is colored and rank-deficient.

2. PROPOSED ALGORITHMS

In this section, we propose the CoNo-SBL algorithm for the recovery
of sparse/compressible vectors in the presence of a noise distributed
asn ∼ N (0,Q) for the observation model given by (1). The con-
ventional SBL framework [9] uses a parameterized prior to induce
sparsity in the solution, given by

p(x;γ) =
N
∏

i=1

(2πγ(i))−1 exp

(

−
|x(i)|2

γ(i)

)

. (5)

In the prior density given in (5), the hyperparametersγ are unknown,
and can be estimated using the type-II Maximum Likelihood (ML)
procedure [20], i.e., by maximizing the marginalized pdfp(y;γ) as

γ̂ML = argmax
γ∈R

N×1
+

p(y;γ). (6)

Since the above problem cannot be solved in closed form, it-
erative estimators such as the EM algorithm is employed. The
sparse/compressible vectorx is considered as the hidden variable
and the ML estimate ofγ is obtained in the M-step. The steps of the
algorithm can be given as

E-step: Q
(

γ|γ(r)
)

= Ex|y;γ(r) [log p(y,x;γ)] (7)

M-step: γ(r+1) = argmax
γ∈R

N×1
+

Q
(

γ|γ(r)
)

. (8)

The E-step above involves computation of the posterior density of
x, where the hyperparametersγ = γ(r), i.e., in order to obtain
the posterior distribution in the(r + 1)th iteration, we utilize the
hyperparameter update obtained in the M-step of therth iteration.
Accordingly, the posterior density ofx can be expressed as

p
(

x|y;γ(r)
)

= N (µ,Σ), (9)

whereΣ = Γ(r) − Γ(r)ΦT
(

Q+ΦΓ(r)ΦT
)−1

ΦΓ(r), andµ =

ΣΦTQ−1y. The M-step in (8) can be simplified, to obtain

γ(r+1)(i) = argmax
γ(i)∈R+

Ex|y;γ(r) [log p(x;γ)] (10)

= Ex|y;γ(r)

[

|x(i)|2
]

= Σ(i, i) + |µ(i)|2 . (11)

In (10), the termEx|y;γ(r) [log p(y|x;γ)] has been dropped, as it is
not a function ofγ(i). Note that, since all the algorithms proposed in
this paper use EM updates, they have monotonicity property,i.e., the
likelihood is guaranteed to increase at each iteration [21,22].1 In the
case of rank-deficient matrixQ, it is necessary that we derive EM
based update equations considering the zero eigenvalues asgiven
in (3). In order to derive the update equations accomodatingfor a
rank-deficient noise covariance matrix, we start with the observation
model (4) and consider̃y = Φ̃x + ñ, whereỹ = [yT

1 y
T
2 ]

T , Φ̃ =
[ΦT

1 Φ
T
2 ]

T andñ ∼ N (0,Λ) with Λ as defined in (2) and (3).
In the case whenQ is rank-deficient, we first letE[n2n

T
2 ] =

σ2
2Im−p. The EM updates then take the form

Σ = Γ(r) − Γ(r)

(

2
∑

m=1

2
∑

n=1

Φ
T
nBnmΦm

)

Γ(r), (12)

where
[

B11 B12

B21 B22

]

=

[

D+ΦT
1 Γ

(r)Φ1 Φ1Γ
(r)ΦT

2

Φ2Γ
(r)ΦT

1 σ2
2Im−p +Φ2Γ

(r)ΦT
2

]−1

.

(13)

Also, we haveµ = ΣΦT
1 D

−1y1 + σ−2
2 ΣΦT

2 y2.
Applying σ2

2 → 0, using straightforward block matrix inver-
sion rules [23] and the identitylimδ→0 A

T (AAT + δIP )
−1 = A†,

1We have found, empirically, that a straightforward initialization such as
Γ(0) = IN leads to accurate solutions.
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whereA† represents the Moore-Penrose pseudo-inverse ofA ∈
R

P×L [24], we obtain the following expression forΣ:

Σ = Γ(r) − Γ(r)
1
2
ΘT

1 B11Θ1Γ
(r)

1
2
− Γ(r)

1
2
Θ†

2U1Θ2Γ
(r) 1

2

+ Γ(r) 1
2ΘT

1 Σ
−1
t1 Θ1Θ

†
2U1Θ2Γ

(r) 1
2 + Γ(r) 1

2 Θ†
2Θ2Θ

T
1 B11Θ1Γ

(r) 1
2 .

(14)

whereB11 = (Σv − Θ1Θ
†
2Θ2Θ

T
1 )

−1, Σv = (D + Φ1Γ
(r)ΦT

1 ),

Θ1 = Φ1Γ
(r) 1

2 ,Θ2 = Φ2Γ
(r) 1

2 , andU1 = Im−p+Θ2Θ
T
1 B11Θ1Θ

†
2.

Further, using the identitylimδ→0(A
TA + δIL)

−1AT = A†, the
posterior meanµ is given as

µ = ΣΦ
T
1 D

−1
y1 + Γ(r) 1

2U
1
2
2 (Θ2U

1
2
2 )†y2, (15)

whereU2 = (IN + ΘT
1 D

−1Θ1)
−1. SinceΘT

1 D
−1Θ1 is rank-

deficient,U2 can be found using theSherman-Morrison-Woodbury
update as

U2 = IN −ΘT
1 Σ

−1
v Θ1. (16)

Thus, the final EM updates evaluateΣ andµ iteratively using above
expressions until convergence. The steps are summarized inAlgo-
rithm 1.

Algorithm 1 CoNo-SBL Algorithm
1: InitializeΓ← IN ,
2: while (Γ(r+1) − Γ(r)) < 10−6 or r < 300 do
3: Σ = Γ(r) − Γ(r) 1

2ΘT
1 B11Θ1Γ

(r) 1
2 −

Γ(r) 1
2Θ†

2U1Θ2Γ
(r) 1

2 + Γ(r) 1
2ΘT

1 Σ
−1
t1 Θ1Θ

†
2U1Θ2Γ

(r) 1
2 +

Γ(r) 1
2Θ†

2Θ2Θ
T
1 B11Θ1Γ

(r) 1
2

4: µ = ΣΦT
1 D

−1y1 + Γ(r) 1
2U

1
2
2 (Θ2U

1
2
2 )†y2,

5: γ
(r+1)
i ← |µi|

2 +Σii

6: (r)← (r + 1)
7: end while
8: Outputµ

In the following section, we derive lower bounds on the MSE
performance of CoNo-SBL estimator.

3. CRAMÉR RAO TYPE BOUNDS: BCRB AND MCRB

In this section, we derive Bayesian and marginalized Cramér Rao
type lower bounds (BCRB and MCRB) for the system in (4), where
the unknown vector is given byθ = [xT ,γT ]T and the signalx
is drawn from a compressible prior distribution [25]. We model the
sparse vector as being random andγ as being random or marginal-
ized [26]. However, in contrast to [26], we derive the lower bounds
in the presence of noise with a general covariance matrixQ.

3.1. BCRB for θ = [xT ,γT ]T

In this subsection, we consider the unknown vectorθ = [xT , γT ]T ,
where the compressible vectorx is distributed according to a Gaus-
sian distribution parameterized byγ. For deriving the BCRB, a hy-
perprior distribution is considered onγ, and, as a result, the vec-
tor x is drawn from a compressible prior distribution. We con-
sider the Inverse Gamma (IG) hyperprior distribution [20],where,
γi, i = 1, 2, . . . , N are distributed asIG

(

ν
2
, ν
2λ

)

. The IG distribu-
tion is given by

p(γi) ,
(

Γ
(ν

2

))−1 ( ν

2λ

) ν

2
γ
(− ν

2
−1)

i exp

{

−
ν

2λγi

}

, (17)

whereγi ∈ (0,∞), ν, λ > 0. From the definition of the BCRB,
we state the following proposition.

Proposition 1 For the signal model in (4) with noise covariance
matrix Q, the BCRB on the MSE matrix Eθ of the unknown ran-
dom vector θ = [xT ,γT ]T , where the conditional distribution of
the compressible signal x|γ is N (0,Γ), and the hyperprior distri-
bution on γ is

∏N

i=1 IG
(

ν
2
, ν
2λ

)

, is given by Eθ � (Bθ)−1, where

Bθ ,

[

Bθ(x) Bθ(x,γ)
(Bθ(x,γ))T Bθ(γ)

]

=

[

1
λ
(Im − Φ̃(λΛ+ Φ̃Φ̃T )Φ̃T ) 0N×N

0N×N
λ2(ν+2)(ν+7)

2ν
IN

]

. (18)

Proof: Using the definitions in [26],Bθ(x) can be computed as

B
θ(x) , −EY,X,Γ

[

∇2
x log p(y,x;γ)

]

= −EY,X,Γ

[

∇x

(

Φ̃
T
Λ

−1(y − Φ̃x)− Γ−1
x
)]

= Φ̃
T
Λ

−1
Φ̃+ EΓ

[

Γ−1
]

= Φ̃
T
Λ

−1
Φ̃+ λIN . (19)

However, note that in the case whenQ is rank-deficient,Λ is not
invertible. In this case,(Bθ(x))−1 can be expressed as

(Bθ(x))−1
,

1

λ
(Im − Φ̃(λΛ+ Φ̃Φ̃

T )ΦT ). (20)

Further,Bθ(x,γ) andBθ(γ) remains the same as in [26]. �

It is known that the MCRB is the lower bound to the BCRB [26].
In the following subsection, we derive the MCRB by marginalizing
γ from the joint distribution ofx andγ.

3.2. MCRB for θ = [γ]

In this subsection, we consider an IG hyperprior onγ as in the con-
ventional SBL framework. Effectively, this leads to a compressible
vectorx with a Student-t distribution. Such bounds have been de-
rived in [26] where the authors obtain MCRB for vectors sampled
from a Student-t distribution with parametersν and λ, i.e., aν-
compressiblex [25]. The Student-t prior is given by

p(x) ,

(

Γ((ν + 1)/2)

Γ( ν
2
)

)N (
λ

πν

)N

2
N
∏

i=1

(

1 +
λx2

i

ν

)−
(ν+1)

2

,

(21)
wherexi ∈ (−∞,∞), ν, λ > 0, andν represents the number of
degrees of freedom andλ represents the inverse variance of the dis-
tribution. Accordingly, we state the following theorem forderiving
the MCRB.

Proposition 2 For the signal model in (4), the MCRB on the MSE
matrix Ex of the unknown compressible random vector θ = [x]
distributed as (21), is given by Ex � (Mx)−1, where

(Mx)−1 =
(ν + 3)

λ(ν + 1)

(

I− Φ̃

(

(ν + 1)λ

(ν + 3)
Λ+ Φ̃Φ̃

T

)

Φ̃
T

)

(22)

Proof: Omitted due to lack of space; but the proof follows along the
lines of Proposition 1 and [26]. �

4. SIMULATION RESULTS

In this section, we illustrate the Mean Squared Error (MSE) per-
formance of the proposed CoNo-SBL algorithm and compare it
with existing methods. We also compare against the Cramér Rao
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type bounds derived in Sec. 3. We generate ak-sparse vector
x ∈ R

N , whose nonzero entries are i.i.d. according to an equiprob-
able Bernoulli (x(i) ∈ {+1,−1}) distribution. In each trial, the
measurement matrixΦ is generated as a random overcomplete
matrix, whose entries are i.i.d. and standard Gaussian distributed
and the columns are normalized to have unit euclidean norm. The
experiment is repeated for1000 trials. The noisy measurements
are corrupted by white noise with known noise varianceσ2. We
considerN = 100 andk = 10, m represents the number of mea-
surements andp the rank of the noise covariance matrix. We fix
the number of iterations of the proposed algorithm to300 and the
convergence criterion is given by||Γr+1 − Γr||2 < 10−6.

4.1. CoNo-SBL Algorithm
In this section, we simulate the proposed CoNo-SBL algorithm, and
compare its performance with OMP [7], and the convex optimization
based approach known as LASSO [5].
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m = 8k, p = m
m = 6k, p = 0.7m
m = 6k, p = 0.1m

solid(black)    : l−1
dotted(red)     : OMP
dashed(blue)  : CoNo−SBL

(a) MSE vs. SNR for differentp andm
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(b) MSE vs.p for differentm, with SNR= 10dB

Fig. 1. Comparison of the MSE performance of the CoNo-SBL with
OMP [7] and LASSO [5].

The MSE performance of the CoNo-SBL algorithm across SNR
for different values ofp, the rank of the noise covariance matrixQ,
is depicted in Fig. 1(a). We observe that the MSE performancewhen
as little as10% of the measurements are noiseless is markedly su-
perior to the case when all the measurements are noisy. Although
similar behavior is observed with OMP and LASSO, the proposed
CoNo-SBL algorithm has a superior performance compared to the
other schemes as it is able to exploit the structure in the noise co-
variance matrix. Interestingly, in the case of CoNo-SBL algorithm,
we see that even at low SNR, having a few noiseless measurements

leads to significant MSE improvements, and the sparse signalcan be
recovered with an MSE in the order of10−2.

In Fig. 1(b), we demonstrate the MSE performance of the CoNo-
SBL algorithm as a function of the rankp. Again, we observe that,
compared to OMP and LASSO, the CoNo-SBL algorithm utilizes
the rank-deficient structure ofQ effectively, leading to a better MSE
performance. We note that there is an interesting tradeoff between
the number of measurements and the rank ofQ: when the rank of
Q is low, fewer measurements suffice to achieve the same MSE. For
instance, the MSE of CoNo-SBL algorithm withm = 60 andp =
0.7m is better than the MSE withm = 80 andp = m.

4.2. Cramér Rao type bounds
In Fig. 2, we compare the performance of the proposed CoNo-SBL
algorithm for recovering a compressible vectorx, with the Cramér
Rao type bounds derived in Sec. 3. Specifically, we consider an
IG hyperprior distribution onΓ and a conditional Gaussian distribu-
tion onx, parameterized byΓ. Hence, the resulting compressible
signal is viewed as being drawn from Student-t distribution, which
is compressible [25]. We consider the parameters of the hyperprior
given byν = 2.05 andλ = 2000 [26]. The figure compares the
performance of CoNo-SBL algorithm as a function of rank,p, for
different values ofm, with the MCRB and the BCRB given in (22)
and (18), respectively. First, note that MCRB is tighter compared to
BCRB [26]. However, a more interesting point, which has beenob-
served empirically but is not shown in the plot to avoid clutter is that
a slight rank deficiency in the noise covariance matrixQ is sufficient
to get a considerable improvement in the MSE performance. Note
that rank deficiency leads to a system model given by (4), encom-
passing a few noiseless measurements which results in a significant
improvement in the recovery performance when the recovery algo-
rithm explicitly accounts for the known noise statistics.

0 5 10 15 20
10

−3

10
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10
−1

10
0

rank(p)

M
S

E

 

 

CoNo−SBL
MCRB
BCRB

solid(black) : m = 6k
dashed(red)  : m = 9k

Fig. 2. MSE of the proposed CoNo-SBL technique compared to
BCRB and MCRB as a function of rankp of Q for differentm.

5. CONCLUSIONS
In this work, we proposed a novel CoNo-SBL algorithm for re-
covery of sparse and compressible signals contaminated by colored
noise with a rank-deficient noise covariance matrix. We showed
that the rank-deficient structure of the noise covariance matrix leads
to noiseless measurements, which can be utilized to improvethe
MSE performance as compared to the existing methods. In the con-
text of compressible signal estimation, we derived the Bayesian and
marginalized CRB for the case where the noise covariance matrix is
rank-deficient. We saw that MCRB is tighter than BCRB, and that
the performance of the CoNo-SBL algorithm is close to the MCRB.
Future work could extend the CoNo-SBL algorithm to perform joint
sparse vector recovery and noise covariance matrix estimation.
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