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ABSTRACT

We propose a method for high dimensional sparse estima-

tion in the multiple measurement vector case. The method

is based on the covariance matching technique and with a

sparse penalty along the ideas of the square-root LASSO

(sr-LASSO). The method not only benefits from the strong

characteristics of sr-LASSO (independence of the hyper-

parameter selection from the noise variance), but also offers

a performance near maximum likelihood. It performs close

to the Cramer-Rao bound even at low signal to noise ratios

and it is generalized to manage correlated noise. The only

assumption in this matter is that the noise covariance matrix

structure is known. The numerical simulation provided in

an array processing application illustrates the potential of the

method.

Index Terms— sparse estimation, multiple measure-

ments, correlated noise, covariance matching

1. INTRODUCTION

Estimation problems, such as direction of arrival (DOA) esti-

mation with sensor arrays [1] and channel estimation [2], are

traditionally handled by dividing it into two tasks, the detec-

tion of number of signals and the estimation of signals. A

precise detection of the number of signals [3] is the key to

the accurate estimation of signals. Either over detection or

under detection would cause large estimation error or over-

fitting. Alternatively, the whole framework can be unified as

a sparse estimation problem, where the number of signals,

the support set and the signal itself are estimated simultane-

ously. This under the condition of having an underdetermined

system of equations with sparse solutions as in compressed

sensing. Interestingly, solving an optimization problem un-

der some assumption answers to the detection and estimation

subproblems at once. The optimization problem is not unique,

actually different methods consider rather different objectives

[4–6]. Despite the elegance of these methods, they all suf-

fer from two issues: dependency of the selection of hyper-

parameter on the knowledge of noise variance, and inaccuracy

of the estimation due to low signal to noise ratios (SNRs).
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der contract 621-2011-5847.

These issues bring impracticality to sparse estimators when

they face real world applications. Belloni et al. [7] proposed a

method, sr-LASSO, to overcome the hyper-parameter depen-

dency issue. However, it is still vulnerable to strong perturba-

tion. For applications with multiple measurements, Stoica et

al. proposed a free from hyper-parameter selection method,

called SPICE [8]. SPICE utilizes the covariance matching

technique [9] to handle the low SNR condition and it only

considers uncorrelated noise. It turned out that SPICE under

the assumption of white noise is indeed a sr-LASSO with a

particular regularization parameter [10, 11]. Further investi-

gation for accurate estimation of signals in the presence of

strong contamination, independent and correlated, is under

demand.

Inspired by covariance matching estimation techniques

(COMET) [9], we propose a new method based on sr-LASSO

which is well-performing in poor SNR situations. Another

strong aspect of our method is its capability to manage cor-

related noise. Here, we only assume that the structure of the

noise covariance matrix is known. A DOA estimation prob-

lem is considered in Section 3. Our method is compared with

multiple, both standard and recently proposed, methods as

well as the Cramer-Rao bound (CRB). The simulation results

reveal that our method achieves the CRB in a wide range of

SNRs for a reasonably low number of measurements.

2. PROBLEM FORMULATION AND METHOD

2.1. Data Model and Problem Formulation

Let y(t) ∈ Cm represent the complex measurement vector

obtained from the following model

y(t) = Φx(t) + n(t), t = 1, 2, . . . ,M. (1)

Here, x(t) ∈ CN is the unknown vector parameter which

is sparse such that ‖x(t)‖0 = k < m ≪ N . The ‖.‖0
norm denotes the cardinality of the support set of x(t) de-

fined as I = {i|xi 6= 0}. It is assumed that signal instances

{xI(t)}t=1,2,... are spatially and temporally independent and

identically distributed (i.i.d) complex random variables with

zero mean, and the support set I does not vary over time.

The noise {n(t)}t=1,2,... ∈ Cm is temporally i.i.d complex

Gaussian distributed n(t) ∼ N (0,Rn), and assumed to be
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uncorrelated with the signal x(t). The known sensing matrix

Φ ∈ Cm×N has full row rank.

Our main interest herein is to estimate the support set I
from M number of measurements given the data model (1).

The estimation proceeds under the assumption that Rn is lin-

early parameterized by some unknown parameters.

2.2. Background and Method

Straightforward calculation for the data model (1) shows that

R ≡ E(y(t)yH (t)) = ΦPΦH +Rn, (2)

where E(.) denotes the statistical expectation, .H denotes the

matrix conjugate transpose and P = E(x(t)xH (t)) is a diag-

onal matrix. Since x(t) is sparse, the diagonal of P is also

sparse. Let the operator vec(.) stack the columns of a matrix

into a vector, r ≡ vec(R). Then vectorizing both sides of (2)

yields

r = vec(ΦPΦH +Rn)

= (Φ∗ ⊗Φ)vec(P) + rn = (Φ∗ ◦Φ)p+ rn,

where .∗ is the matrix conjugate, ⊗ and ◦ are the Kro-

necker product and the Khatri-Rao product, respectively,

rn = vec(Rn) and p = diag(P).
It is known that under weak conditions the maximum

likelihood estimator is asymptotically efficient, but highly

nonlinear. An alternative to the maximum likelihood esti-

mator is COMET [9], also known as the generalized least

squares [12]. COMET minimizes the weighted distance be-

tween the model R and the sample covariance matrix R̂,

R̂ ≡ 1/M
∑M

t=1 y(t)y
H (t). The motivation for the weight-

ing comes from the desire to emphasize on data that are more

reliable (corrupted with less noise). An optimal choice for

the weighting is the inverse of the covariance matrix of the

residual.

COMET relies on the following objective function

g(P,Rn) =
∥

∥

∥
R̂−1/2

(

R̂−R
)

R̂−1/2
∥

∥

∥

2

F
, (3)

where R̂−1/2 is the Hermitian matrix square root of R̂−1.

Further derivations reveal the relation with weighted least

squares:

g(P,Rn) = tr
(

R̂−1(R̂−R)R̂−1(R̂−R)
)

= vecH
(

(R̂−R)R̂−1
)

vec
(

R̂−1(R̂−R)
)

= (r̂− r)HΓ(r̂− r) (4)

where tr denotes the trace of a matrix and Γ is

Γ ≡ R̂−∗ ⊗ R̂−1 ≈ 1

M
(Cov (r̂− r))

−1
.

We first want to minimize g(P,Rn) with respect to the

noise covariance matrix Rn, for a fixed P. As Rn is assumed

to be linearly parameterized we can write rn = Mβ. Ele-

ments of M are zero, one and the imaginary unit (±j) and β

contains the real unknown parameters of the noise covariance.

The reader should keep in mind that M is a known matrix as

the structure of Rn is assumed to be known. Then,

β̂ = argmin
β

g(P,Rn(β)) =
(

MHΓM
)−1

MHΓr̃n (5)

where r̃n ≡ vec(R̃n) and R̃n ≡ R̂ − ΦPΦH . We rewrite

(4) as

g(P,Rn) =
∥

∥

∥
Γ1/2 (r̃n − rn)

∥

∥

∥

2

2
, (6)

and replace rn by its estimate r̂n = Mβ̂. This gives

g(P, R̂n) =
∥

∥

∥
Π⊥Γ1/2 (r̂− (Φ∗ ◦Φ)p)

∥

∥

∥

2

2
, (7)

where

Π⊥ ≡ I− Γ1/2M
(

MHΓM
)−1

MHΓ1/2.

Matrix Π⊥ is a projection matrix and its eigenvalues are ei-

ther one or zero. Hence, eigen-decomposition factorizes it to

the canonical form of

Π⊥ = UΛUH = UΛU
H
Λ .

Here, the columns ofUΛ are the normalized eigenvectors cor-

responding to the non-zero eigenvalues. Exploiting the com-

pact eigen-decomposition into function g in (7) reduces the

dimensions of the problem to

g(P, R̂n) =
∥

∥

∥
r̃− Φ̃p

∥

∥

∥

2

2
, (8)

r̃ ≡ UH
Λ Γ1/2r̂,

Φ̃ ≡ UH
Λ Γ1/2(Φ∗ ◦Φ).

The final step to estimate p can be seen to be a classi-

cal sparse regression problem. sr-LASSO is a recently pro-

posed sparse estimator, which provides a practical way to se-

lect the required regularization parameter. Unlike most meth-

ods [4, 5], sr- LASSO does not need the knowledge about the

noise variance for this selection as will be discussed in some

detail later in this section. Before introducing the sr-LASSO,

we define a diagonal matrix W such that wii = ‖φ̃i‖2 to

normalize the length of the columns of the new sensing ma-

trix Φ̃. Equalized contribution of the columns is essential

to sr-LASSO. Finally, we suggest the following weighted sr-

LASSO (wsr-LASSO) to estimate p, or rather detect the sup-

port set I:

min
p̃≥0

λ√
m

‖p̃‖1 +
∥

∥

∥
r̃− Φ̃W−1p̃

∥

∥

∥

2
(9)
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where p̃ ≡ Wp.

The accuracy of the estimation by (9) depends on the reg-

ularization parameter λ. This has been studied by Belloni

et al. in [7]. First, consider the subgradient optimality condi-

tions which implies |hi|−λ/
√
m ≤ 0 [13], whereh is defined

as

h = ▽
∥

∥

∥
r̃− Φ̃W−1p̃

∥

∥

∥

2

∣

∣

∣

p̃true

= −
Re

{

W−1Φ̃
H
UH

Λ Γ1/2r̃n

}

∥

∥

∥
UH

Λ Γ1/2r̃n

∥

∥

∥

2

. (10)

Note that the gradient h in (10) is given by the insertion of

the true p. From the previous definitions it can also be shown

that UH
Λ Γ1/2r̃n approximately is a zero mean complex Gaus-

sian vector with covariance matrix 1
M I. Satisfaction of the

optimality condition is granted if λ is chosen larger than√
mmaxi |hi| with high probability. Here is the idea, we

generate a data set D whose elements dj are obtained by

simulating
√
mmaxi |hi|. Then, we choose λ such that it is

larger than most dj’s with a large probability 1 − α. In this

sense, the optimality conditions would be statistically satis-

fied with a large probability. This is mathematically described

as

λ = c · quantile(D, 1 − α), (11)

D =







dj |dj =
√
m

∥

∥

∥
Re(W−1Φ̃

H
ξj)

∥

∥

∥

∞
∥

∥ξj
∥

∥

2

, j = 1, 2, . . .







.

(12)

The quantile function returns the data value where the cumu-

lative distribution reaches the probability level of 1 − α over

the data set D, i.e.,

quantile(D, 1 − α) = t |Pr {D < t} ≤ 1− α.

In (12), ξj’s are independent and identically distributed com-

plex zero mean Gaussian normalized random vectors, and

c > 1 is a constant. It has been recommended to set c = 1.1
and 1− α = .95 [7]. Equations (11) and (12) are constructed

to select the smallest hyper-parameter that satisfies the opti-

mality condition for efficiency [7].

3. EMPIRICAL RESULTS

In this section the proposed method (9) is applied to a DOA

estimation problem. The numerical results are compared with

standard and newly proposed methods in two different setups.

In order to measure its performance, the parametric CRB is

also included to provide the fundamental limit [14].

Both setups consider a uniform linear array consisting of

10 sensors such that the distance between two adjacent sen-

sors is half a wavelength of impinging wavefronts. The reason

behind the choice of a ULA is the richness and diversity of the

existing DOA estimation methods for such arrays. The vector

of received signals at the array is given by

y(t) = Φ(θ̃)x(t) + n(t),

where Φ is the m × N direction matrix and its columns are

defined as

φ(θ̃l) =
[

1 e−jπ cos θ̃l . . . e−jπ(m−1) cos θ̃l

]T

.

Here, θ̃ is the complete set of possible directions obtained

by gridding the interval of [0◦, 180◦] with the resolution of

0.1◦. Two source signals with equal power are considered,

located at {88.05◦, 92.05◦}, and the number of measurements

M is equal to 200. The source signal and the additive noise

are both zero mean random complex signals with Gaussian

distribution. The source signal instances are independently

generated with covariance matrix σ2
sI. The noise covariance

matrix alters based on scenario. The signal power varies with

SNR as σ2
s = 10SNR/10.

Scenario 1: white noise

In this case the additive noise is white with covariance matrix

I. Fig. 1 illustrates the comparison between different DOA

estimation techniques and the proposed method (9). For the

sake of lucidity (prevention of indistinguishability in presence

of many curves), the comparison criterion is the average root

mean square of the estimated DOA’s over 1000 Monte Carlo

trials, i.e.

RMSE =

√

√

√

√

1

2000

2
∑

k=1

1000
∑

l=1

(

θ̂lk − θtruek

)2

.

Here, θ̂lk is the DOA estimate of the k-th source for the l-th
Monte Carlo trial. The competitive methods are ROOT-

MUSIC, Spectral (ordinary)-MUSIC (see, e.g., [1]) and

SPICE+AP [8]. SPICE+AP is an extension of SPICE+ for

array processing applications and it minimizes a slightly

different objective function than SPICE+, namely,

∥

∥

∥
R−1/2(R̂ −R)R̂−1/2

∥

∥

∥

2

F

The SPICE minimization can be implemented by different

methods. The one which has been promoted most is the itera-

tive one [8]. Hence, in this simulation the iterative implemen-

tation has been chosen, with the number of iterations fixed to

200. The CVX toolbox [15] was used to solve (9). Spectral-

MUSIC, SPICE+AP and wsr-LASSO estimate a (pseudo-)

spectrum in the grid points. For all these methods we have

selected the locations of the two highest peaks as estimates of

the DOAs. Note also that both MUSIC methods need to know

the number of signals in advance to form the noise subspace.

The sparse estimation methods wsr-LASSO and SPICE do
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Fig. 1. The performance of DOA estimation for white addi-

tive noise described in the first scenario.

not need or use this information in the estimation of the spec-

trum.

As can be seen in Fig. 1, wsr-LASSO outperforms all

other methods and almost achieves the CRB bound already at

an SNR equal to -4 dB. Eventually, its performance gets re-

stricted by the grid resolution. Note that the true sources on

purpose were selected to be off-the grid of the dictionary. Fig.

1 shows that SPICE+AP performs poorly when the source sig-

nals are closely separated. The only competitive method is

ROOT-MUSIC, and it asymptotically obtains the CRB bound

as SNR grows. The performance of ROOT-MUSIC is not re-

stricted by the grid resolution as the other methods are since

it is a parametric method. This justifies why ROOT-MUSIC

does not get saturated at high SNRs. Note also that this sce-

nario is precisely one in which ROOT-MUSIC performs at its

best.

Scenario 2: colored noise

In this scenario the additive noise is colored. More precisely,

the noise covariance matrix has a tri-diagonal structure. The

elements of its main diagonal are all equal to one, the el-

ements of the first diagonal above and below it are set to

−0.5j and 0.5j, respectively. Although the true noise covari-

ance parameters are equal along the diagonals, the estima-

tors consider them to potentially be unequal. For this colored

noise case, ROOT-MUSIC, SPECTRAL-MUSIC and SPICE

are not directly applicable (they will give biased estimates).

Instead, a numerical comparison is made with the newly pro-

posed method [16], we name it as mapped sr-LASSO (msr-

LASSO), is illustrated in Fig. 2. msr-LASSO minimizes the

objective function

‖p‖1 + λ′
∥

∥

∥
P(r̂− (Φ̃

∗ ◦ Φ̃)p)
∥

∥

∥

2
,

with a positivity constraint on p. Here, P is a projection that
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Fig. 2. The performance of DOA estimation for colored addi-

tive noise described in the second scenario.

maps the support of the noise covariance matrix to zero. As

can be seen in Fig. 2, wsr-LASSO performs poorly in very

low SNRs, but as SNR grows it outperforms msr-LASSO. It

almost achieves the CRB when SNR is adequate, and as SNR

grows immensely it again saturates at the half of the grid res-

olution (.05◦ around 20 dB).

4. CONCLUSION

The wsr-LASSO method is introduced as an extension to sr-

LASSO. It inherits all the strong characteristics of sr-LASSO

and in addition it offers more. It performs near the CRB

bound for low SNRs and it also considers correlated pertur-

bations with merely the assumption on the knowledge of the

structure of the noise covariance matrix.

Empirical results for DOA estimation are provided. They

illustrate the superiority of wsr-LASSO to other existing,

standard and newly proposed, methods.

Further theoretical investigations are needed. They are

mainly the maximum number of detectable signal sources, the

relation with MDL and asymptotic bounds for the error of

estimation.

5. ACKNOWLEDGMENT

The authors would like to thank Mohammadreza Malek-

Mohammadi for helpful discussions.

6. REFERENCES

[1] H. Krim and M. Viberg, “Two decades of array signal

processing research: the parametric approach,” Signal

3754



Processing Magazine, IEEE, vol. 13, no. 4, pp. 67–94,

Jul 1996.

[2] G.B. Giannakis and S.D. Halford, “Asymptotically op-

timal blind fractionally spaced channel estimation and

performance analysis,” Signal Processing, IEEE Trans-

actions on, vol. 45, no. 7, pp. 1815–1830, Jul 1997.

[3] M. Wax and T. Kailath, “Detection of signals by infor-

mation theoretic criteria,” Acoustics, Speech and Signal

Processing, IEEE Transactions on, vol. 33, no. 2, pp.

387–392, Apr 1985.

[4] Robert Tibshirani, “Regression shrinkage and selection

via the lasso,” Journal of the Royal Statistical Society.

Series B (Methodological), vol. 58, no. 1, pp. pp. 267–

288, 1996.

[5] D.L. Donoho, “Compressed sensing,” Information The-

ory, IEEE Transactions on, vol. 52, no. 4, pp. 1289–

1306, April 2006.

[6] Emmanuel Candes and Terence Tao, “The dantzig se-

lector: Statistical estimation when p is much larger than

n,” The Annals of Statistics, pp. 2313–2351, 2007.

[7] A. Belloni, V. Chernozhukov, and L. Wang, “Square-

root lasso: pivotal recovery of sparse signals via conic

programming,” Biometrika, vol. 98, no. 4, pp. 791–806,

2011.

[8] Petre Stoica, P. Babu, and Jian Li, “Spice: A sparse

covariance-based estimation method for array process-

ing,” Signal Processing, IEEE Transactions on, vol. 59,

no. 2, pp. 629–638, Feb 2011.

[9] B. Ottersten, P. Stoica, and R. Roy, “Covariance match-

ing estimation techniques for array signal processing ap-

plications,” Digital Signal Processing, vol. 8, no. 3, pp.

185 – 210, 1998.

[10] C.R. Rojas, D. Katselis, and H. Hjalmarsson, “A note

on the spice method,” Signal Processing, IEEE Trans-

actions on, vol. 61, no. 18, pp. 4545–4551, Sept 2013.

[11] Prabhu Babu and Petre Stoica, “Connection between

spice and square-root lasso for sparse parameter estima-

tion,” Signal Processing, vol. 95, pp. 10–14, 2014.

[12] Theodore W Anderson, An introduction to multivariate

statistical analysis, Wiley, 1984.
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