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ABSTRACT

Transient interference can dramatically degrade the perfor-
mance of over-the-horizon radar (OTHR). A novel transien-
t interference suppression method based on structured low-
rank matrix decomposition is proposed in this paper. Un-
like most of the traditional interference suppression methods
which need three steps: detect interferences, excise corrupt-
ed data and reconstruct excised data, the proposed method
formulates the interference suppression as a Hankel matrix
decomposition problem and suppress the interference via a
single process of optimization. In addition, the proposed al-
gorithm can suppress not only the interferences including the
weak and strong ones, but also the noise. Simulation and ex-
perimental results have demonstrated the effectiveness of the
proposed method.

Index Terms— over-the-horizon radar (OTHR), transient
interference suppression, low-rank matrix decomposition.

1. INTRODUCTION

High frequency (HF) over the horizon radar (OTHR) can de-
tect the over-the-horizon targets via either the sky wave or
the surface wave. This makes it useful primarily for the early
warning radar role. Unfortunately, the OTHR signal is usually
contaminated by transient interference, such as cosmic nois-
es, lightnings, meteor echoes, man-made impulse bursts and
other HF radiating sources, which can dramatically degrade
the performance of OTHR system. Generally, since that the
transient interferences possess some directional characteris-
tics, they can be suppressed by the adaptive beamforming.
However, it should be pointed out that adaptive beamforming
cannot cancel the interferences received through the mainlobe
of the antenna. In addition, most of the transient interferences
in the HF band have powerful energy but with a short time
duration and may still enter the radar receiver via the antenna
sidelobes [1]. This has resulted in the development of slow
time domain signal processing techniques for transient inter-
ference mitigation [1-6].

The basic ideas of traditional methods in [2—4] are quite
similar. Firstly, interference occurrence position is detected

*Correspondence: limao164@163.com.
This work was supported by the National Nature Science Foundation of
China under Grants 61032010 and 61102142.

978-1-4673-6997-8/15/$31.00 ©2015 IEEE

3746

by threshold method. Subsequently, the corrupted data are set
to zero or excised from the received data and the missing da-
ta are reconstructed using autoregressive (AR) model. In [5],
the missing data is reconstructs based on compressed sens-
ing. In [1], a no-data interpolation method is proposed based
on the adaptive time-frequency analysis technique, which de-
tects the transient interference by the characteristics of short
duration and strong energy. This time-frequency method can
enhance the transient interference excision performance, par-
ticularly in cases where the durations of the interferences are
relatively long compared to the coherent processing interval
(CPI). However, it is usually more computationally expensive
than the AR-based technique. For all the aforementioned al-
gorithms, although the specific implementation details of the
detection steps vary, all the detection methods of interferences
are based on the simple property that the transient interference
is short-lived on the time scale of the CPI but with powerful
energy. Hence, in the cases where the interferences are weak,
the traditional methods can not effectively detect and suppress
them.

2. SIGNAL MODEL

The transient interference suppression step is generally per-
formed after pulse compression and array beamforming, but
prior to Doppler processing [1-6]. The received time-domain
signal in a given azimuth-range cell within CPI can be mod-
eled as [1]

r(m) =i(m) +n(m)+s(m),m=1,---,M (1)

where m denotes the slow time index, M is the number
of pulses in CPI, i(m) represents the transient interference,

n(m) denotes the noise, and s(m) is the target-plus-clutter
signal. According to the Bragg scattering hypothesis [7-9],
the dominant sea clutter signal spectrum received by an H-
F radar system can be characterized by a pair of spikes (or
peaks) symmetrically placed about 0 Hz in the Doppler do-
main, known as the Bragg lines. The Doppler frequencies of

the Bragg lines are given by +fp5 = 4/ %

4=, where [, is the
radar carrier frequency, g is the acceleration due to gravity,
and c denotes the speed of light. However, in practice, the
random and time-varying nature of the transmission medium,
the ionosphere, may cause the Bragg lines to be extended in

the Doppler domain. Hence, the sea clutter can be adequately
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modeled by [9, 10]

c(m) = alej(QTrmeTJrsm(m)) + a2ej(*27fmeT+<P2(m)) )

where a; and as are the magnitudes of the positive and nega-
tive Bragg lines, 1 (m) and p2(m) denote the phases of fre-
quency modulations caused by the time-varying ionosphere,
and T represents the pulse recurrence interval. Assume that
the target is moving with constant radial velocity. Then, the
target signal can be written as [11-13]

t(m) = bel?™famT (3)

where b denotes the complex amplitude and f, is the Doppler
frequency. Combining (2) and (3), the target-plus-clutter echo
in (1) can be rewritten as

s(m) =c(m) + t(m)
:alej(QﬂmeT-HOl(m)) + aQBj(—QWmeT-HOz(m))

+ ped(@mT+3a2(mT)?). 4)

3. TRANSIENT INTERFERENCE SUPPRESSION

3.1. Construct Low-rank and Sparsity Matrices

For the target-plus-clutter echo s(m),m = 1,---, M, the
Hankel matrix with m; rows and moy columns is construct-
ed as

I et

S S s(ma +

H(s) = : 8
s(my) s(mi+1) s(M)

where M = my + mg — 1. It is shown in [9] and [14]
that the sea clutter ¢(m) may be considered as slow time-
varying sinusoids in practice, i.e., the phases of frequency
modulations ¢1(m) and p2(m) in (2) change significantly s-
low over the period of ms. Then, according to [9], we have
that the rank of (s) will be close to 3. Generally, the num-
ber of pulses M, such as 256 or 512, is far greater than 3.
Thus, we can always construct an approximate low-rank Han-
kel matrix #(s) using the sequence s(m),m = 1,---, M,
i.e., rank(H(s)) < min(mq,ms).

In OTHR, the transient interferences are mainly due to
lightning impulsive noises and meteor trail echoes [1, 15].
The durations of lightning and meteor are typically about
100-400ms [1,2] and 0.5-1s, respectively. For the ship and
aircraft detection tasks, the CPI is usually about 10-80s and
3-5s, respectively. Hence, the transient interference i(m) in
(1) always has a relatively short duration on the time scale of
CPI, such that the interference Hankel matrix 74(¢), with the
same structure as H(s) in (5), can be considered as a sparse
matrix (a matrix populated primarily with zeros).

3.2. Suppression via Structured Matrix Decomposition

For notational simplicity, we use the notations of R = #H(r),
S =H(s),I = H(i), and N = #H(n) to denote the complex
Hankel matrices with respect to the received signal, target-
plus-clutter signal, interferences, and noise sequences in (1),
respectively. Then, the signal model in (1) can be expressed
in the form of matrix as

R=I+N+S (6)

where I are sparse Hankel matrix, IN is noise matrix, and S
is low-rank Hankel matrix. Matrix decomposition is a proce-
dure for recovering an unknown matrix with low-rank or ap-
proximately low-rank constraint from a measurement matrix
corrupted by errors or noise. Therefore, it is obvious that the
suppression of the transient interference and the noise can be
formulated as a matrix decomposition problem. In addition,
the addition of structured prior information can improve the
recovery performance of matrix. Considering that the low-
rank matrix S has Hankel structure in (6), the transient inter-
ference suppression can be solved via the following optimiza-
tion

uin (] + AT
st. R=I+N+S,|N||r <d,andS € H (7)

where || - ||« denotes the nuclear norm of a matrix (the sum
of its singular values), || - |1 denotes the ¢; norm of a matrix
(the sum of the absolute values of matrix entries), |N|p =
\/tr(NHN) is the Frobenius norm, the superscript (-) de-
notes conjugate transpose, tr(-) denotes the matrix trace, ¢ is
the noise level, and ) is a trade-off constant for the sparse and
the low-rank components. Mathematically, the Hankel con-
straint S € H in (7) can be expressed equivalently as

M
S = Z amB, (3
m=1

where «,, is the complex weight coefficient and B,, €
R™1X™M2 g the basis matrix with the elements of the mth
lower anti-diagonal elements equal to 1 and the others equal
to zero. Then, the convex optimization problem in (7) can be
rewritten as

in ||S]|« I
i 8]l + Al

M
st R=T+N+S,|N|p<dandS =" amBnm. (9

m=1

It should be pointed out that the traditional matrix decompo-
sition has been applied usually by considering real-valued da-
ta [16—19]. However, the received signals are complex-valued
data in our signal model (1). It is shown in [20] that the prob-
lem of matrix decomposition for complex-valued data can be
easily modified by arranging the real and imaginary parts of
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the data in both real-valued matrices and applying matrix de-
composition to these matrices. For the method in [20], the real
and imaginary parts of the observed signal are decoupled, thus
any prior phase information is not exploited. In order to ex-
ploit the phase information, we directly extend the real-valued
matrix decomposition algorithm to complex-valued domain.
We adopt the alternating direction method of multipliers (AD-
MM) [17,21] method to solve the optimization problem (9).
Define the augmented Lagrange function for the problem as

K(N,S,Q,I,Yl,Yg,,LL) = ||SH* + >\||IH1 + §R<Y1ﬂ A1>
+ DAL + RO A) + Zl1 A} (10)

where a = [y, - -+, apy]7 is the complex weight coefficient
vector, R(-) denotes the real part operator, A; = R — T —
N-SeCmm Ay =M a,B, -8 eCmxm,
(A,B) = tr(AB) denotes the matrix inner product, & > 0
is a penalty parameter, and the matrices Y1, Yo € Cm1Xmz2
are Lagrange multiplier matrices. Then, the solution can be
approximated using an alternating strategy minimizing (10)
with respect to each component separately [17,21]
Ng1 = arg, Ui‘lln (N, Sk, 0, T, Yk, Yor, pr)
F

Skr1 = argrnslng(Nk+1aSaak;Ik;Yl,kaYQ,kaﬁbk)
Qpyl = 3fgm;n€(Nk+1aSk+1aaa1kaY1,kaY2,k7Mk)
I =arg Hllinf(NkH, Sk+1: k41, L, Y1 5, Yo o, i)

(11)
and
Yipr1 = Yip + Uiy
Yort1 =Yoo+ urloyp . (12)
He+1 = PHE
Each of subproblems in (11) has a closed-form solution
N1 = min(1, 8[| Zx||z")Zk
Sk =UT_ (X)VH
2 (13)

k
g1 = Bl o {(Skr1 — -2 Yo k>TBm}
L1 =Ty (R = Ngyq — Sk+1 + 5 Y1)

where Z; = R—Ik—SkJruk Ylk, F, = 27'(R -
Ip — Ngyo + Zm 1 Cm kB 4y (Yl r+ Yay)), and
F, = UZVH is the singular value decomposition (SVD) of
Fj;.. The soft thresholding operator T is defined as

[ a—ezl D
@ -{ ")

[, > e

otherwise (14)

where « is a real or complex scalar and ¢ > 0. When 7.(+) is
applied to matrix, it acts element-wise. In practice, the noise
level 4 is unknown. We estimate real noise level online by 6=
IR — Skt+1 — Ipt1]|r [22]. Since the estimation ¢ is biased
at the beginning iterations, we propose to start our algorithm
with a relatively larger 6 = ||R||F, and then reduce ¢ by a
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Fig. 1. Simulation results.

factor 0.2 until & reach 4. In computation, the iteration can be
terminated by

max (A1 k, Aoy Ag ks Aak) <1 (15)

where 7 > 0 is a stopping tolerance for the relative change
of two consecutive iterates, Ay x = ||Sp+1 — Skl r/||Skll 7

Ao = llaksi—aklp/loxllr. As i = |Teor—Te] o/ | Lk .
and Ay = ||[Ng41 — Ng||#/||Ng| #. For completeness, the
entire algorithm has been summarized as Algorithm 1.

Algorithm 1. Solve problem (7) via ADMM.
Input:
Initial value: Ip = 0; Sp = 0; ap = 0; Y10 = 0;
Yoo=0k=0;7=10"%po=10"%p=15;
Received signal matrix R and A =
1: while not converged do
2:  Update N, S, «, and I by (13);
3 Update Y1, Yo, and p by (12);
4:  Check the convergence conditions in (15);
5: end while
Output:
Recovered signal: § = [0 j+1, -

1

(max(mq, mg))” 2.

;aM7k+l]T'

4. SIMULATION AND EXPERIMENTAL RESULTS

1) Simulation results: The signal-to-clutter ratio (SCR)
and signal -to-noise ratio (SNR) are defined as SCR =

10log M and SNR = 10log M where
2 m=1

o“ is the variance of noise. In simulation, we set SCR =
—40dB and M = 512. Assume a; = 1.5 x 108, ay = 108,
p1(m) = 0.425 cos(0.4mmT), pa(m) = 0.775 cos(0.17mT),
and f; = —5Hz.

In Fig.1(a), the error of recovered s is plotted versus the
number of matrix columns ms, defined as

error = 12— slr (16)
sl
where s = [s(1),---,s(M)]T is the real target-plus-clutter

echo. We see that the curves for smaller SNRs are higher
than the ones for larger SNRs, which implies that larger SNRs
lead to better recovering performance, as expected. It is also
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observed that the proposed method has the best performance
when mg = M /2 = 256. The reason may be the low-rank
and sparsity constraints can be best fitted when my = M/2.
In Fig.1(b), however, we can find the running time for a MAT-
LAB implementation is longest when mgo = M /2. In simula-
tion, we calculate the average running time via 50 implemen-
tations on a Dell desktop computer with a 3.1 GHz Intel Core
2 Duo processor and 2 GB of memory.

2) Experimental results: In this section, we will validate
the transient interference suppression capability of the pro-
posed method with the experimental data from a trial sky-
wave OTHR. The CPI contains M = 512 pulses. We set
my = M/2 = 256.
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For comparison, the adaptive time-frequency method
in [1] is also applied to suppress the transient interference.
Fig.2(a) shows the amplitude of a selected experimental data
contaminated by the transient interference. We can clearly
see that there are at least two transient interferences in the
original signal, i.e., the weak and the strong interferences
marked by the red and the black ellipses, respectively. The
amplitude of strong interference is much higher than the un-
derlying background level, but the weak interference is not
obvious. Although the phenomenology and energy associated
with both interferences maybe entirely different, it is obvious
that the transient nature remains a common factor. Hence,
both of interferences are sparse in the slow time domain. The
amplitude of signal suppressed by the time-frequency method
is presented in Fig.2(b). Comparing Fig.2(b) with Fig.2(a),
it is obvious that the strong interference is almost complete-
ly excised, but the weak one is only removed slightly. In
Fig.2(c), the corresponding amplitude of recovered data via
the proposed method is plotted. It is seen that all the inter-
ferences, including the strong and weak ones, are suppressed,
as expected, which justifies the proposed method can simul-
taneously mitigate weak and strong interferences. Fig.3(a)
shows the Doppler spectrum of original signal. It can be seen
that the background level is significantly high and has almost
submerged the target peak. The spectrum of interference-
removed signal obtained by the time-frequency method is
shown in Fig.3(b). We can find that the background level is
greatly reduced. Thanks to the reduction of the background
level, the target peak becomes visible at about 6.1Hz. In
Fig.3(c), the interference-removed spectrum via the proposed
method is plotted. Comparing Fig.3(b) with Fig.3(c), it is ob-
vious that the interference-removed signal via the proposed
method has lower background noise level, making it possible
for improving target detection performance in further sig-
nal processing. This shows that the proposed algorithm can
not only suppress the interferences, including the weak and
strong ones, but also the noise.

5. CONCLUSION

A unique method of the transient interference suppression is
proposed in this paper based on the matrix decomposition.
Unlike the traditional methods which employ energy feature
of transient interference to detect the location of interference,
the proposed method uses the sparsity of transient interfer-
ence and the low-rank of target-plus-clutter signal to decom-
pose the interference and target-plus-clutter components from
the received echo. The detection and interpolation steps are
not needed in the proposed method. Experimental examples
show that the proposed method can not only effectively sup-
press the interferences, including the weak and strong ones,
but also the noise. It should be pointed out that we also veri-
fied the performance and convergence of the proposed method
by other simulation and experimental data. However, the re-
sults have not been included because of space limitations.
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