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ABSTRACT

In this paper, we consider the recovery of a low rank matrixM
given a subset of noisy quantized (or ordinal) measurements.
We consider a constrained maximum likelihood estimation of
M , under a constraint on the entry-wise infinity-norm of M
and an exact rank constraint. We provide an upper bound on
the Frobenius norm of the matrix estimation error under this
model. Past theoretical investigations have been restricted to
binary quantizers, and based on convex relaxation of the rank.
We propose a globally convergent optimization algorithm ex-
ploiting existing work on low rank matrix factorization, and
validate the method on synthetic data, with improved perfor-
mance over past methods.

Index Terms— Quantization, matrix completion, convex
optimization, constrained maximum likelihood.

1. INTRODUCTION

The problem of recovering a low rank matrix from an incom-
plete or noisy sampling of its entries arises in a variety of ap-
plications, including collaborative filtering [1, 2], sensor net-
work localization [3, 4, 5], manifold learning [6, 7] and rank
aggregation [8]. In many applications, the observations are
not only missing, but are also highly discretized, or quantized,
e.g. binary-valued (1-bit) [9, 10, 11], or multiple-valued [12].
For example, in the Netflix problem where a subset of the
users’ ratings is observed, the ratings take integer values be-
tween 1 and 5. Although one can apply existing matrix com-
pletion techniques to discrete-valued observations by treating
them as continuous-valued, performance improvement can be
achieved by treating the values as discrete [10, 12].

Relation to Prior Work: Recent work in the quantized
matrix completion literature has followed a probabilistic
model for relating the matrix Y of quantized observations
to the underlying true matrix M (further described in (1)-(2)
in the next section), and has performed estimation of low
rank M via solving a constrained maximum likelihood (ML)
optimization problem. In [10, 11], 1-bit (binary) observations
are considered, and performance analysis is given based on a
convex program and assumptions on the sampling scheme. In
these works, directly using the binary observations is shown
to result in better performance than treating the observations
as real-valued. In [12], this work is extended to multi-level

quantization and it is similarly shown that performance is im-
proved when the number of levels is less than ten. However,
no performance analysis exists for the multi-level case.

Contributions: In this paper, we follow the 1-bit formula-
tion of [10, 11] in seeking an ML estimate of M , but consider
multi-level observations. Instead of using a convex relaxation
for the rank on M as in previous work, we use an exact rank
constraint. We provide an upperbound on the Frobenius norm
of the matrix estimation error under this model. We follow
the sampling model of [13], which relates Ω, the set of in-
dices of the observed data, to the edges of a bipartite graph.
This allows our results to be more general in that it includes
the commonly used sampling schemes in previous work such
as uniform sampling of [10, 12] and non-uniform sampling.
Finally, we present an algorithm based on matrix factoriza-
tion for solving our optimization problem, which is globally
convergent, and evaluate it on synthetic data.

Notation: We use capital letters, such as M , to denote a
matrix, and Mij as its (i, j)th entry. We let ‖M‖2, ‖M‖F
and ‖M‖∞ denote the operator, Frobenius and entry-wise
infinity-norm, respectively, of M . The notation M> denotes
the transpose of M , |S| denotes the cardinality of the set S,
[n] denotes the set of integers {1, . . . , n}, 1n ∈ Rn is the
vector of all ones, ḟ(x) := (df(x)/dx), and 1[A] denotes the
indicator function, i.e. 1[A] = 1 when A is true, and 1[A] = 0
otherwise.

2. SYSTEM MODEL

Given M ∈ Rd1×d2 , a subset of indices Ω ⊆ [d1] × [d2],
a twice differentiable known function f` : R → [0, 1], and
` ∈ [K], (K ≥ 2), we observe

Yij = ` with probability f`(Mij) for (i, j) ∈ Ω, (1)

where
∑K
`=1 f`(Mij) = 1. One important application of this

model is the K-level quantization of noisy Mij +Zij , where
Yij is given by [12]:

Yij = Q(Mij + Zij), (i, j) ∈ Ω, (2)

where the noise matrix Z has i.i.d. entries with cumulative
distribution function (CDF) Φ(z), and the function Q(.) :
R → [K] corresponds to a scalar quantizer that maps a real
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number to one of the K ordered labels according to [12]

Q(x) = ` if ω`−1 < x ≤ ω`, ` ∈ [K], (3)

ω0 < ω1 < · · · < ωK , and we will take ω0 = −∞ and ωK =
∞. In this paper, the quantization bin boundaries are assumed
to be known in contrast to [12], where they are estimated in
the algorithm. It then follows that

f`(Mij) = P (Yij = `|Mij) = Φ(ω`−Mij)−Φ(ω`−1−Mij).
(4)

For K = 2 and ω1 = 0, one obtains the model of [10, 11].
We observe a subset Ω ⊆ [d1]×[d2] of the entries in Y , which
are related to M via the probabilistic model given in (1)-(2).

We wish to estimate unknown M using a constrained ML
approach. We use X ∈ Rd1×d2 to denote the optimization
variable. The negative log-likelihood function is given by

FΩ,Y (X) = −
∑

(i,j)∈Ω

[
K∑
`=1

(
1[Yij=`] log(f`(Xij))

)]
(5)

which is a convex function when the function f` is log-
concave. Two natural choices for the function f are: (i)
Logistic model with logistic CDF Φ(x) = Φlog(x/σ) =

1
1+e−x/σ

, σ > 0; (ii) Probit model with Φ(x) = Φnorm(x/σ)

where σ > 0 and Φnorm(x) is the CDF of standard normal
distribution N (0, 1). One motivation for these choices is that
logistic and normal CDFs and pdfs are log-concave (e.g. [14,
pp. 104-5]). Then, by [14, p. 105-7], f` is log-concave for
logistic and normal Φ(x). These models have also been used
in [9, 10, 11].

We assume that M is a low-rank matrix with rank
bounded by r. We furthermore assume that the true ma-
trix M satisfies ‖M‖∞ ≤ α, which helps make the recovery
of M well-posed by preventing excessive “spikiness” of the
matrix. We refer the reader to [10, 11, 15] for further details.
Coupling these constraints, based on the assumptions on M ,
with the negative log-likelihood function given in (5), the
constrained ML estimate we wish to obtain is given by the
solution to the optimization problem (s.t.: subject to):

M̂ = arg min
X

FΩ,Y (X) s.t. ‖X‖∞ ≤ α, rank(X) ≤ r. (6)

We now discuss our assumptions on the set Ω, on which
we follow [13]. Consider a bipartite graphG = ([d1], [d2], E),
where the edge set E ⊆ [d1]× [d2] is related to the index set
of revealed entries Ω as (i, j) ∈ E iff (i, j) ∈ Ω. Abusing
the notation, we use G for both the graph and its bi-adjacency
matrix (BAM) where BAM Gij = 1 if (i, j) ∈ E, Gij = 0
if (i, j) 6∈ E. In [13], square matrices M are considered,
and Ω is related to the edges of a bipartite graph with an
equal number of left and right nodes. In this paper, M is
rectangular. Thus, we will consider a larger bipartite graph
G̃ with equal number of left and right nodes, with the orig-
inal bipartite graph G being a “truncation” of G̃, and base
our assumptions on this larger graph G̃, as follows. Set

dmax = max(d1, d2) and without loss of generality, take
d1 ≥ d2. Define the bipartite graph G̃ = ([dmax], [dmax], Ẽ)

such that the first d2 columns of BAM G̃ equal BAM G and
consider Ω̃ ⊆ [dmax] × [dmax] with Ω̃ related to Ω just as G̃
is related to G. Then (i, j) ∈ Ẽ iff (i, j) ∈ Ω̃ and Ω ⊆ Ω̃.
We denote the association of G̃ to Ω̃ by G̃\Ω̃, and similarly
for G\Ω. Following [13], we assume that the bipartite graph
G̃\Ω̃ is dg-regular with the following properties on its SVD:

(A1) All top singular vectors of G̃ are 1dmax/
√
dmax.

(A2) We have σ1(G̃) = dg and σ2(G̃) ≤ C3

√
dg , where

C3 > 0 is some universal constant.

Thus we require G̃ to have a large enough spectral gap. Note
that these assumptions imply that |Ω| ≡ m = dg max{d1, d2}.

A family of graphs that satisfy (A1) and (A2) are Ramanu-
jan graphs, a class of regular expander graphs [16]. As shown
in [17] and discussed in [13], a Erdos-Renyi random graph
with average degree ≥ c log(dmax) satisfies this spectral gap
property with high probability (w.h.p.), and as shown in [18]
and discussed in [13], so do stochastic block models for cer-
tain choices of inter- and intra-cluster edge connection prob-
abilities. Thus, the sampling scheme of [13] is more general
than a uniform sampling assumption, used in [10, 9], and it
also includes the stochastic block model [13] resulting in non-
uniform sampling.

3. PERFORMANCE BOUND

We now present a performance bound for M̂ in (6). Define

γα ≤ min
`∈[K]

inf
|x|≤α

{
ḟ2
` (x)

f2
` (x)

− f̈`(x)

f`(x)

}
, (7)

Lα ≥ max
`∈[K]

sup
|x|≤α

{∣∣∣ḟ`(x)
∣∣∣ /f`(x)

}
, (8)

where α is the bound on the entry-wise infinity-norm of M̂
(see (6)). For further reference, define the constraint set

C :=
{
X ∈ Rd1×d2 : ‖X‖∞ ≤ α, rank(X) ≤ r

}
. (9)

Theorem 3.1. Assume that M ∈ C, |Ω| = m and G̃\Ω̃ as-
sociated with G\Ω satisfies assumptions (A1) and (A2). Fur-
ther, suppose Y is generated as in (1) where f`(x) is log-
concave in x ∀` ∈ [K]. Then with probability at least 1 −
C1 exp(−C2m), any global minimizer M̂ of (6) satisfies

‖M̂ −M‖F√
d1d2

≤ max

C1α

√
r2d3

max

md1d2
, C2α

√
r3d9

max

m4d1d2


(10)

if γα > 0, where C1α = 8αC3, C2α = 32.16
√

2Lα/γα,
dmax = max(d1, d2). Here, C1, C2, C3 > 0 are universal
constants, and γα and Lα are given by (7), (8).
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The proof is omitted for lack of space. It is based on a
second-order Taylor expansion of the negative log-likelihood
function around the true matrix, exploitation of [19, Theo-
rem 8.4] concerning spectral norms of random matrices, and
a modification of [13, Theorem 4.1] regarding closeness of a
fixed matrix to its sampled version. By [14, p. 105-107] f`(x)

is log-concave iff f̈`(x)f`(x) ≤ (ḟ`(x))2. Thus γα ≥ 0, in
general, and it can be shown to be > 0 for the logistic and
Gaussian models of Sec. 2.

Of particular interest is the case where p = m
d1d2

is fixed
and we let d1 and d2 become large, with d1/d2 fixed. In this
case with high probability (w.h.p.), we have

‖M̂ −M‖F√
d1d2

≤ O

(
1

p2

√
r3d9

max

(d1d2)5

)
. (11)

Comparison with previous work for the binary case (K =
2): We now provide a comparison of our results with those of
[10, 11] which are restricted to the binary case (K=2). Con-
siderM ∈ Rn×n, with p fraction of its entries sampled. Then,
d1 = d2 = n, m = pd1d2 = pn2. The bounds proposed in
[10, 11] yield w.h.p. 1

n2 ‖M̂−M‖2F ≤ Cα
√

r
pn = O

(√
r
pn

)
where Cα depends upon α and f(x). In our bound we have
w.h.p. 1

n2 ‖M̂ −M‖2F ≤ O
(
r3

p4n

)
. Comparing the two, we

see our method has faster convergence rate in n for fixed rank
r and fraction of revealed entries p. One may notice that if the
missing entries scale with n according to p ∼ O(1/n) then
[10] yields bounded error while our bound grows with n; in
our case we need p ≥ O(1/n1/4). We believe this to be an
artifact of our proof, as our numerical results (Fig. 1a) show
our method significantly outperforms [10] for low values of
p and higher values of rank r, and is comparable for higher
values of p and lower values of r.

4. OPTIMIZATION

We use the factorization technique of [20, 21, 22] where in-
stead of optimizing with respect toX , it is factorized into two
matrices U ∈ Rd1×k and V ∈ Rd2×k such that X = UV >.
One then chooses k = r + 1, and optimizes with respect to
the factors U, V . Following [11] for the case of K = 2, we
have the following approximate projected gradient method.
Algorithm 1: Approximate Projected Gradient Method

Given estimates U t, V t at iteration t, one updates[
U t+1

V t+1

]
= Pα

([
U t − τ√

t
∇XFΩ,Y (U tV t

>
)V t

V t − τ√
t
∇XFΩ,Y (U tV t

>
)>U t

])
(12)

where Pα
(
[U> V >]>

)
=
√
α/‖UV >‖∞[U> V >]> if

‖UV >‖∞ > α, and = [U> V >]>, otherwise. In (12) the
stepsize τ is selected via a backtracking line search using
Armijo’s rule, to minimize the cost FΩ,Y (U t+1V t+1>).

In addition to (12) and approximate projection Pα, [11]
(K = 2) also uses another projection to enforce a max-norm
constraint. If a matrix A has rank r and ‖A‖∞ ≤ α, then
‖A‖max ≤

√
rα [11]. Therefore, in our case the max-norm

constraint is unnecessary; in this sense, our Algorithm 1 is the
same as the approach of [11] for K = 2.

Remark 4.1. The hard rank constraint results in a nonconvex
constraint set; thus (6) is a nonconvex optimization problem;
similarly for Algorithm 1 for which the rank constraint is im-
plicit in the factorization of X . However, the following result
is shown in [20, Proposition 4], following [21] for noncon-
vex problems of this form. If (U∗, V ∗) is a local minimum of
the reformulated (i.e., factored) problem, then X∗ = U∗V ∗>

is the global minimum of problem (6), so long as U∗ and V ∗

are rank-deficient. (Rank deficiency of (U∗, V ∗) is a sufficient
condition, not necessary.) This result is utilized in [23], [22]
and [11] for problems of this form. Thus one would expect to
achieve global convergence for the problem of (6). However,
the “projection” Pα in (12) is not an orthogonal projection
and the set {‖UV >‖∞ ≤ α} is not convex in U, V (although
{‖X‖∞ ≤ α} is convex inX), therefore, convergence to even
a local minimum is not ensured. However, numerically, this
method has still provided good results (similarly reported in
[11]).

The convergence deficiency discussed in Remark 4.1 mo-
tivates the following log-barrier penalty function approach
[14, Sec. 11.2].
Algorithm 2: Logarithmic Barrier Gradient Method The

constraint maxi,j |Xij | ≤ α translates to Xij − α ≤ 0 and
−Xij−α ≤ 0 ∀(i, j), which motivates the log-barrier penalty
function − log

(
1− (Xij/α)2

)
which is finite for |Xij | < α,

=∞ otherwise. This leads to the objective function

F̃Ω,Y (X) = FΩ,Y (X)− λ
∑
(i,j)

log
(
1− (Xij/α)2

)
(13)

and the optimization problem

M̂ = arg min
X

F̃Ω,Y (X) s.t. rank(X) ≤ r. (14)

The parameter λ > 0 in (13) sets the accuracy of approxima-
tion of maxi,j |Xij | ≤ α via the log-barrier function (which is
twice-differentiable and convex in X , hence so is F̃Ω,Y (X)).
Now, however, convergence is guaranteed, and the factoriza-
tion approach X = UV > is well-justified, per Remark 4.1.
The above problem is typically solved via a sequence of cen-
tral path following solutions [14, Sec. 11.2] where one grad-
ually reduces λ toward 0. In our approach we initialize it
with the solution to Algorithm 1 and then either use a sin-
gle “small” value of λ, or select λ via 5-fold cross-validation.
One may therefore view augmentation with log-barrier cost
as regularization of FΩ,Y (X). We solve the factored ver-
sion X = UV > of problem (14) for a fixed λ using a Nes-
terov/accelerated gradient method with adaptive restart [24],
or a gradient descent method.

3743



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

p

‖
M̂

−
M

‖
2 F

‖
M

‖
2 F

1 bit matrix completion, n=200

 

 

Alg. 1: r =3

Alg. 2: r =3

Alg. 1: r =5

Alg. 2: r =5

Alg. 1: r =10

Alg. 2: r =10

trace−norm: r=3

trace−norm: r=5

trace−norm: r=10

(a) K=2: binary case, w1 = 0, “trace-norm” refers to [10],
Alg. 1 is the method of [11] for known r.
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Alg. 1: r =3
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(b) K=5: w1 = −0.4, w2 = −0.15, w3 = 0.15, w4 = 0.4

Fig. 1: Relative MSE ‖M̂ − M‖2F /‖M‖2F for varied values of
p = q, n = 200, α = 1, Gaussian noise with σ = 0.18 .

5. NUMERICAL EXPERIMENTS

In this section, we test our method on synthetic data. We set
d1 = d2 = n and construct M ∈ Rn×n as M = M1M

>
2

where M1 and M2 are n× r matrices with i.i.d. entries drawn
from a uniform distribution on [−0.5, 0.5] (as in [11, 10] for
K = 2). Then we scale M to achieve ‖M‖∞ = 1 = α.
We pick r = 3, 5 or 10, vary matrix sizes n = 100, 200,
or 400. We generate the set Ω of revealed indices via a
stochastic block model as in [13]. In the basic stochastic
block model, we divide the set of nodes [n] into two clus-
ters, where each intra-cluster edge is sampled uniformly with
probability p and an inter-cluster edge is sampled with prob-
ability q. For our simulations, initially we chose p = q which
corresponds to when the spectral gap is the largest. This
setting also corresponds to the Bernoulli sampling model
of [10]. Then we change the fraction of revealed 1-bit en-
tries as p = 0.05, 0.1, 0.15, 0.2, 0.4, 0.6 or 1. We used the
model (2) with Zij as zero-mean Gaussian with standard
deviation σ = 0.18 (as in [11, 10] for K = 2). Algorithm
1 was implemented with random initialization and its result
was used to initialize Algorithm 2 where we either picked
λ via 5-fold cross-validation (how well the label values of
revealed Yij in the test set are matched), or simply used a
“small” fixed λ. The resulting relative mean-square error

(MSE) ‖M̂ − M‖2F /‖M‖2F is shown in Figures 1a and 1b
for n = 200, and K = 2, which we compare with [10],
and K = 5, respectively, where we average over 20 Monte
Carlo runs. As expected, the performance improves with in-
creasing n and increasing p. For K = 2, Alg. 2 significantly
outperforms [10, 11] for low values of p and high values of r.

In Fig. 2 we show the relative MSE for n = 100, 200, 400,
p = 0.2, 0.4, 0.6 (= q). We also plot the line 1/n in Fig. 2 to
show the scale of the upper bound O

(
r3/(p4n)

)
established

in Section 3. As we can see, the empirical estimation errors
follow approximately the same scaling, suggesting that our
analysis is tight, up to some constant. In Fig. 3 we plot the
relative MSE for n = 200, rank(r) = 5, via the same method
described above, but with varying p and keeping p+ q = 0.7,
under the probit model. This enables us to study the perfor-
mance of the model under nonuniform sampling. Note that
when p = q = 0.35, then the spectral gap is largest [13] and
MSE is the smallest, and as p gets larger, the spectral gap
decreases, leading to larger MSE.
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Fig. 2: Relative MSE: K = 5, p = q, r = 3, 5 or 10, n =
100, 200, 400, α = 1, Gaussian noise σ = 0.18
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6. CONCLUSIONS

We investigated constrained ML estimation of an unknown
low-rank matrix M given noisy quantized (or ordinal) mea-
surements, under a constraint on the entry-wise infinity-norm
of M and an exact rank constraint (upper bound). We pro-
vided an upper bound on the Frobenius norm of matrix es-
timation error, proposed a globally convergent optimization
algorithm, and validated the method on synthetic data.
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