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ABSTRACT

We present a distributed and decentralized algorithm for graph
signal inpainting. The previous work obtained a closed-form
solution with matrix inversion. In this paper, we ease the com-
putation by using a distributed algorithm, which solves graph
signal inpainting by restricting each node to communicate only
with its local nodes. We show that the solution of the dis-
tributed algorithm converges to the closed-form solution with
the corresponding convergence speed. Experiments on online
blog classification and temperature prediction suggest that the
convergence speed of the proposed distributed algorithm is
competitive with that of the centralized algorithm, especially
when a graph tends to be regular. Since a distributed algorithm
does not require to collect data to a center, it is more practical
and efficient.

Index Terms— Signal processing on graphs, graph signal
inpainting, distributed computing

1. INTRODUCTION

The problem of collecting and analyzing data obtained from
or represented by networks has been receiving increasing in-
terest due to the abundance of such data in various research
fields. Recently, a theoretical framework called graph signal
processing has emerged as a new approach to analyze signals
with irregular structure [1, 2, 3]. Its key idea is to represent
the structure of a signal with a graph by associating signal co-
efficients with graph nodes and analyzing graph signals by us-
ing appropriately defined signal processing techniques, such
as Fourier transform, filtering, and wavelets.

One task of analyzing data represented by graphs is to re-
construct or estimate graph signal coefficients that are miss-
ing, unmeasurable, or corrupted, called graph signal inpaint-
ing [4, 5, 6]. The approach via minimizing graph total vari-
ation provide a closed-form solution, which involves matrix
inversion [7]. To solve this, we propose a distributed and de-
centralized algortithm for graph signal inpainting that can be
computed locally in the vertex domain without transmitting
signal coefficients to a computing center. We show that the
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solution of the algorithm converges to the closed-form solu-
tion with certain convergence speed. We finally compare the
convergence performance with a conventional centralized al-
gorithm in the tasks of online blog classification and tempera-
ture prediction.

2. DISCRETE SIGNAL PROCESSING ON GRAPHS

In this section, we briefly review relevant concepts of discrete
signal processing on graphs; a thorough introduction can be
found in [1, 2]. Discrete signal processing on graphs is a theo-
retical framework that generalizes classical discrete signal pro-
cessing from regular domains, such as lines and rectangular
lattices, to irregular structures that are commonly described
by graphs.

Graph shift. DSPg deals about signals with complex, ir-
regular structure that is represented by a graph G = (V, A),
where V = {v;}X, is the set of nodes and A € CN*N
is a graph shift, or a weighted adjacency matrix. Each A; ;
contains the edge weight between the ith node and the jth
node, which characterizes their relation. For example, the
edge weight can quantify similarities and dependencies be-
tween nodes, or indicate communication patterns in networks.

Graph signals. Using this graph, we refer to a signal with
structure as a graph signal, which is defined as a map that as-
signs a signal coefficient x,, € C to the graph node v,,, and
write it in a vector form,

X = [%1,552,"' ,fENjIT S (CN

Graph total variation. A concept often used in signal
processing is that of smoothness. Smoothness of graph signals
is expressed by a graph total variation function

1

T @)
where A\, (A) denotes the eigenvalue of A with the largest
magnitude. For notational simplicity, assume that the graph
shift A has been normalized to satisfy A,,q(A) = 1. Note
that when the graph shift A is the cyclic permutation matrix, it
represents time-series signals, and (1) reduces to the same def-
inition from classical signal processing. Often, the quadratic
form of graph total variation is used instead [8],

Sa(x) = |Jx — Ax]|5. )

TVA(X) =

; ey
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We use the quadratic form of the graph total variation for two
reasons. First, it is computationally easier to optimize than
the /1-norm based graph total variation in (1). Second, the
£1-norm based graph total variation, which penalizes less tran-
sient changes than the quadratic form, is good at separating
smooth from non-smooth parts of graph signals; the goal here,
however, is to force graph signals at each node to be smooth.

3. GRAPH SIGNAL INPAINTING VIA TOTAL
VARIATION MINIMIZATION

In this section, we briefly review previous work on graph sig-
nal inpainting, which lays a foundation for the distributed al-
gorithms shown later. For more details on graph signal in-
painting, see [7, 8],. We consider a corrupted graph signal
measurement

[‘;ﬂ _t_erw_er{‘;VV/:], 3)

where x is a true graph signal, ty; € C is the uncorrupted
part of the signal and t;; € CV~M is the corrupted part, w
is noise with small variance, and wy, is corruption. The goal
of graph signal inpainting is to recover x from t by removing
the corruption w.

We assume that the true signal x in (3) has low variation
with respect to the underlying graph, represented by the graph
shift A; we recover the true graph signal by solving the fol-
lowing minimization problem.

X = argmin Sy(x), (4a)
subject to [[wal]d < €2, (4b)
t=x+w. (40)

The condition (4b) controls the noise level of w 4.

3.1. Graph total variation regularization

To get a closed-form solution, the graph signal inpainting (4)
can be formulated as an unconstrained problem as,

)?:argm)in % — taq]|3 + A Sa(x), %)

where the tuning parameter A controls the trade-off between
the two parts of the objective function. Since the quadratic
form of graph total variation is a regularization term, (5) is
called the regularization approach. The closed-form solution
is as follows [7]:

%= (¢M+A}i)71€, )

where O\ = {IMM 0}? [tM}INX I-A)*I-A),

0 0 0
and * denotes the Hermitian transpose.

3.2. Graph total variation minimization

When the uncorrupted part of the signal needs to be preserved

intact, we solve (4) directly for € = 0,
2 =

arg min So(x), (7)

subject to Xpm =t

Since we focus on minimizing the quadratic form of graph
total variation, (7) is called the minimization approach. By
writing A in a block form as

:‘;MM /EMM
Aum  Auy

:&:

)

the closed-form solution is as follows [7]:
~ ~—1~
Xy = _AZ,{L{AZ/{MtM~ (8)

4. DISTRIBUTED GRAPH TOTAL MINIMIZATION
FOR SIGNAL INPAINTING

The closed-form solutions of both the regularization approach
and the minimization approach requires inverting a matrix.
When we deal with large graphs, that computation is expen-
sive. To solve this, we propose the corresponding distributed
and decentralized algorithms for both regularization and min-
imization approaches and show the properties of convergence.

4.1. Distributed graph total variation regularization

We propose the following algorithm as a distributed and de-
centralized counterpart of (5):

Algorithm 1. (Distributed graph total variation regulariza-
tion) _
Let h(A) =T —a(®aq + AA), with a such that ||h(A)||2 < 1.
Set the intial conditions as k = 0, x(©) = 0, and do the fol-
lowing two steps iteratively:

xFHD e p(A)x®) o, )
k +— k+1,

until convergence.

In (9), the value of the nth node is updated as

N
X = N h(A)pmxP) + at,

m

Il
-

(1 — aX) I—ad

I
M=

3
l‘

Fa(A*+A—A*A))px®) 1 at,,

where (A" A), . =D, A,Zn A; . When the value of A,, ,,,
or Af is nonzero, there exists an edge between the nth and

n,m?
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mth node; when the value of (A* A),, ,,, is nonzero, there is
at least one node connecting the nth and mth node. We thus
see that when the geodesic distance between the nth node and
the mth node is more than 2, h(A),, ,,, is always zero; in other
words, the value of each node is updated by weighting the val-
ues of its local neighbors and adding a pre-stored constant.
This algorithm can be computed by each node without trans-
mitting signal coefficients to a computing center, which is dis-
tributed and decentralized.

The following theorem provide theoretical insight into Al-
gorithm 1.

Theorem 1. Let k — oo, where k is the iteration number. The
solution of Algorithm I converges to (6) with the convergence
error decreasing as O(||h(A)]|5).

Due to lack of space, the proofs of theorems are omitted
and will be included in an expanded version of the paper.

4.2. Distributed graph total variation minimization

We propose the following algorithm as a distributed and de-
centralized counterpart of (7).

Algorithm 2. (Distributed graph total variation minimiza-
tion) _
Let g(A) = I—aA, with a such that ||g(A)uull2 < 1. Set the

(0)

intial conditions as k = 0, x J& =tm, x5’ =0, and do the

following three steps iteratively

Xg\ljl) — tM,

xFHD) o g(A)x) (10)
k+1,
until convergence.

In (10), the value of the nth node is updated as
N

Z g(A)n,ngf)

Xglk-+1)

m=1
N
= Y (1-a)I+a(A"+A—A"A)), . xP),
m=1
where (A" A),m = > ; A7, Aiy. Similarly 2(A) in (9),
when the geodesic distance between the nth node and the mth
node is more than 2, g(A),, », is always zero. This algorithm
is also distributed and decentralized.
The following theorem shows the sufficient condition for
[lg(A)zas]l2 < 1, which provides a way of choosing a.

Theorem 2. Let 0 < o < 2/A04(A). Then,
llg(Aull2 < 1.

The following theorem provides a theoretical insight into
Algorithm 2.

Theorem 3. Let k — oo, where k is the iteration number. The
solution of Algorithm 2 converges to (8) with the convergence
error decreasing as O(||g(A)vul|5).

4.3. Discussion

The algorithms to solve graph total variation regularization as
in (5) and graph total variation minimization as in (7) are dis-
tributed and decentralized because each node can be updated
individually in each iteration without transmitting signal coef-
ficients to a computing center, this, however, requires an in-
finite number steps to converge. Since both (5) and (7) are
quadratic problems, one alternative is conjugate gradient de-
scent [9], which produces the exact solution after a finite num-
ber of iterations. Conjugate gradient descent, however, is a
centralized method and requires more storage space. Although
it converges faster than the distributed algorithm, it takes more
computation in each iteration. We compare the two versions
in the following section.

5. EXPERIMENTAL RESULTS

We now apply the proposed algorithms to the classification of
online blogs and temperature inpainting. We compare the pro-
posed algorithms with centralized method, conjugate gradient
descent. Note that in both cases, we build directed graph with
asymmetric graph shift, which cannot be handled by graph
Laplacian-based methods [5, 6].

As mentioned in 4.3, the conjugate gradient descent use all
the information, and the distributed methods only use the lo-
cal information. Therefore, the the conjugate gradient descent
should converge faster, but the distributed methods compute
separately at each node, which saves the storage space. Here
the experiments verify that the convergence speed of the pro-
posed distributed method catches up with that of the conjugate
gradient descent when the graph trends to be regular.

5.1. Classification of online blogs

We consider the problem of classifying N = 1224 online po-
litical blogs as either conservative or liberal [10]. We represent
conservative labels as +1 and liberal ones as —1. The blogs
are represented by a graph in which nodes represent blogs,
and directed graph edges correspond to hyperlink references
between blogs. For a node v,, its outgoing edges have weights
1/ deg(v,,), where deg(v,,) is the out-degree of v,, (the num-
ber of outgoing edges).

We randomly labeled 1% of blogs and applied the graph
total variation minimization to estimate the labels for remain-
ing nodes. Estimated labels were thresholded around zero, so
that positive values were set to +1 and negative to —1. We
set a to be 1/ 4. (A). Note that the graph shift represents
a scale-free graph whose degree distribution follows a power
law.

In Figures 1 and 2, we compare the convergence perfor-
mance between the proposed algorithm and the conjugate gra-
dient descent. The convergence error is defined as

(k) _ Hx(k) - X||§

[1¢l2
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where x(¥) is the result in the kth iteration and x is the closed-
form solution. We see that conjugate gradient descent con-
verges much faster than the proposed distributed algorithm.
The reason is that some popular blogs connect most of the
nodes and some other blogs are isolated from the others, which
leads to a large ||g(A)||2. From Theorem 2, we know that a
large ||g(A)||2 causes a slow convergence.
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Fig. 1: Convergence error as a function of the iteration num-
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Fig. 2: Classification accuracy as a function of the iteration
number for online blog classification.

5.2. Temperature inpainting

We consider 150 weather stations in United States that record
their local temperatures [1, 11]. Each weather station has 365
records, in total of 54750 measurements. The graph repre-
senting these weather stations is obtained by measuring the
geodesic distance between each pair of weather stations.

The nodes are represented by an 8-nearest neighbor graph,
in which nodes represent weather stations, and each node
is connected to eight other nodes that represent the clos-
est weather stations. The graph shift A is constructed as
Ai,j = Pi,j / Zz Pi,js where

N2d;
> dig’
where d; ; is the geodesic distances between the ith and the jth
weather stations. Note that the graph shift represents a direct
graph where each node has the same number of neighbors,
which is more regular than the graph shift in Section 5.1.
For each of 365 recording, we randomly corrupted 50%

of measurements and applied the graph total variation min-
imization to estimate those measurements. We set « to be

Pi,j = exp —

1/Amaz(A). In Figures 3 and 4, we compare the conver-
gence performance between the proposed algorithm and con-
jugate gradient descent. We see that the proposed algorithm
converges by using almost the same iterations with conjugate
gradient descent. The reason is that we build a regular graph
that each node has the same degree, which leads to a small
[lg(A)||2. From Theorem 2, we know that a small ||g(A)]|2
causes a fast convergence. From these two experiments, we
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Fig. 3: Convergence error as a function of the iteration number

for temperature inpainting.

Mean re error
4000, L8N Square error

3500}
3000 1

2500
Conjugate gradient descent

2000~ 1
1500{
1000F ,
500 t§ Proposed method i
% 10 20 30 70 80 90 100

40 50 60
lterations

Fig. 4: Mean square error as a function of the iteration number
for temperature inpainting.

conclude that on more regular graphs, the convergence speed
of the proposed distributed and decentralized algorithm is al-
most as fast as the centralized method. Since a distributed
algorithm does not require to collect data to a center, it is more
practical and efficient.

6. CONCLUSION

In this paper, we presented distributed and decentralized al-
gorithms for graph signal inpainting. The algorithms solve
graph signal inpainting by restricting each node to communi-
cate only with its neighbors. We showed that the solution of
the distributed algorithm converges to the closed-form solution
with the theoretical convergence speed. Experiments on online
blog classification and the temperature prediction suggest that
the convergence speed of the proposed distributed algorithm is
competitive with that of the centralized algorithm, especially
when a graph tends to be regular. Since a distributed algorithm
does not require to collect data to a center, it is more practical
and efficient.
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