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ABSTRACT

Detection of clusters and communities in graphs is useful in a wide
range of applications. In this paper we investigate the problem of
detecting a clique embedded in a random graph. Recent results have
demonstrated a sharp detectability threshold for a simple algorithm
based on principal component analysis (PCA). Sparse PCA of the
graph’s modularity matrix can successfully discover clique locations
where PCA-based detection methods fail. In this paper, we demon-
strate that applying sparse PCA to low-rank approximations of the
modularity matrix is a viable solution to the planted clique problem
that enables detection of small planted cliques in graphs where run-
ning the standard semidefinite program for sparse PCA is not possi-
ble.

Index Terms— planted clique detection, graph analysis, com-
munity detection, semidefinite programming, sparse principal com-
ponent analysis

1. INTRODUCTION

Real-world graphs are naturally inhomogeneous and exhibit nonuni-
form edge densities within local substructures. In this setting, it is
often possible to break graphs into communities, or sets of vertices
with a high number of within-group connections and fewer links be-
tween communities. The problem of community detection in net-
works has become increasingly prevalent in recent years and has im-
portant applications to fields such as computer science, biology, and
sociology [1–3]. While community detection often considers par-
titioning a graph into multiple communities, a variant of the prob-
lem considers detection of a small subgraph with higher connectiv-
ity than the remainder of the graph [4], a special case of which is the
planted clique problem [5–7].

A clique is a set of vertices such that every two vertices are con-
nected by an edge. In the planted clique problem, one is given a
graph containing a hidden clique, where each possible edge outside
the clique occurs independently with some probability p. Detecting
the location of this maximum-density embedding in a random back-
ground graph is a useful proxy for a variety of applications—such
as computer network security or social network analysis—in which
a subgraph with anomalous connectivity is to be detected.

This work is sponsored by the Assistant Secretary of Defense for Re-
search & Engineering under Air Force Contract FA8721-05-C-0002. Opin-
ions, interpretations, conclusions and recommendations are those of the au-
thors and are not necessarily endorsed by the United States Government.

We study approaches to solving the planted clique problem that
are based on an analysis of the spectral properties of the graph’s
modularity matrix. Nadakuditi proved in [8] the presence of a phase
transition between a regime in which the principal component of
the modularity matrix can clearly identify the location of the clique
vertices and a regime in which it cannot. Through understanding the
breakdown point of this simple spectral method for clique detection
in high dimensional settings, we hope to motivate new algorithms to
detect cliques smaller than previously thought possible.

Sparse principal component analysis (SPCA) has recently been
shown to enable detection of dense subgraphs that cannot be detected
in the first principal component [7, 9]. The semidefinite program-
ming formulation known as DSPCA has also been proposed as an
approximation that nearly achieves the information-theoretic bound
in [4], and as a complexity-theoretic bound for planted clique detec-
tion [10]. However, DSPCA has great computational burden. This is
because several eigendecompositions are performed over the course
of the procedure. For subgraphs that are relatively close to the de-
tection threshold, however, the subgraph still manifests itself signif-
icantly in the largest eigenvectors. This suggests that these cliques
would be detectable even if only a low-rank subspace of the orig-
inal matrix were considered. In this paper, we investigate the use
of DSPCA with a low-dimensional approximation of the modularity
matrix. The running time of DSPCA is O(n4√logn/ε), so reduc-
ing the dimensionality of the problem can potentially improve the
running time by multiple orders of magnitude.

The remainder of this paper is organized as follows. Section 2
outlines the problem model and defines notation. Section 3 briefly
discusses recent relevant research in this area. In Section 4, we
demonstrate analytically—using an approximation—that a large
fraction of the magnitude of a vector indicating the planted clique
will manifest itself in the eigenvectors of the graph’s modularity
matrix associated with the largest eigenvalues. Section 5 provides
empirical results demonstrating improved performance using a small
number of eigenvectors (rather than only one), and in Section 6 we
summarize and outline possible future work.

2. DEFINITIONS AND NOTATION

In the standard (k, p, n) planted clique problem, one is given an
Erdős-Rényi graph G(n, p) with an embedded clique of size k, and
the objective is to determine the hidden locations of the clique ver-
tices. Formally, given the graph G = (V,E), where V is the set of
vertices and E is the set of edges (connections), with |V | = n, the
desired outcome is the subset of vertices V ∗ ⊂ V , |V ∗| = k that
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belong to the clique.
In our procedure, instead of working directly with the edge set

E, we will analyze the adjacency matrix corresponding to our model.
The adjacency matrix A of an undirected, unweighted graph is a
useful representation of the graph’s topology. Each row and column
is associated with a vertex in V . After applying an arbitrary ordering
of the vertices with integers from 1 to n, we will denote the ith vertex
as vi. Then Aij is 1 if vi and vj are connected by an edge and is 0
otherwise. The model for the adjacency matrix of the planted clique
problem is:

Aij =

8><>:
1 if vi, vj ∈ V ∗

1 with prob p if vi /∈ V ∗ or vj /∈ V ∗

0 with prob 1− p if vi /∈ V ∗ or vj /∈ V ∗.

Consistent with the methodology developed by Newman [1], we
will study the modularity matrix B of our observed graph, defined
as:

Bij = Aij − p,
where we have subtracted the expected value of the adjacency matrix
for the Erdős-Rényi model that does not contain the planted clique.

3. RECENT METHODS AND RESULTS

It has been shown previously that thresholding the principal eigen-
vector of B can yield the locations of the clique vertices. The unit-
normalized principal eigenvector u1 of the modularity matrix asso-
ciated with an Erdős-Rényi graph without an embedded clique is
asymptotically distributed as

√
nu1 ∼ N(0, I) [11]. Using this fact,

Nadakuditi establishes an algorithm for detecting vertices V̂ ∗ in the
planted clique [8]:

V̂ ∗ =
n
vi : |
√
nui1| > F−1

N(0,1)

“
1− α

2

”o
, (1)

where ui1 denotes the ith entry in u1 and the false-alarm probability
of identifying a non-clique vertex as part of the clique is α.

PCA-based clique detection has been shown to have a well-
defined breakdown point in high dimensions. Nadakuditi elucidates
this breakdown point in the following theorem.

Theorem 3.1 (Nadakuditi [8]) Consider a (k, p, n) planted clique
problem where the clique vertices are identified using (1) for a sig-
nificance level α. Then, for fixed p, as k, n→∞ such that k/

√
n→

β ∈ (0,∞) we have

P(clique discovered)
a.s.−−→

(
1 if β > βcrit. :=

q
p

1−p

α otherwise.

This theorem implies that, for sufficiently large graphs, the al-
gorithm for PCA-based clique detection described in (1) performs
poorly when the clique size k ≤

q
np
1−p . Fortunately, there is an-

other spectral technique that has proven capable of getting past this
detection threshold.

We will use an approach relying on sparse PCA to attempt to find
a vector that is “close to” the principal component, but that contains
exactly k nonzero entries, in the hope that the entries will correspond
to the clique vertices. Formally, we would like to solve:

x̂ = arg max
‖x‖2=1

xTBx

subject to ‖x‖0 = k,

(2)

where ‖ · ‖0 denotes the L0 quasi-norm. We will apply a convex
relaxation and use the lifting procedure for semidefinite program-
ming (SDP), following the method of [12], to yield a semidefinite
program:

X̂ = arg max
X∈Sn

tr(BX)− ρ1T |X|1

subject to tr(X) = 1,
(3)

where tr(·) denotes the matrix trace, and Sn is the set of positive
semidefinite matrices in Rn×n. Here, ρ > 0 is a tunable parameter
that controls the sparsity of the solution. After applying DSPCA to a
graph observation, we take the principal eigenvector of X̂ and assign
the vertices associated with the k largest entries in absolute value as
belonging to the clique. We use the DSPCA toolbox provided by the
authors of [12] for the results in this paper.

Fig. 1 compares the results returned by PCA and DSPCA for a
sample test case. We generated an Erdős-Rényi graph G(500, 0.2)
and embedded a clique of size 10. The PCA-based technique fails
here, as the entries in the principal component corresponding to the
clique vertices (marked by magenta dots) are not consistently high
in absolute value. However, the vector returned by DSPCA, or the
principal eigenvector of solution to the SDP relaxation described in
(3), accurately identifies the clique vertices. Here, ρ = 0.6 was
used. For this sparsity level, the DSPCA solution contains a very
clear signal with high values at the clique vertices and is almost zero
at background vertices.
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Fig. 1. Example PCA result (a) and DSPCA result (b).

DSPCA is an iterative algorithm that needs to compute a full
eigendecomposition of a perturbation of the modularity matrix at
each step. Thus, for large graphs, the algorithm can run quite slowly.
However, while the clique does not stand out in the principal com-
ponent, it may still be well-represented within a low-dimensional
subspace corresponding to the eigenvectors with the largest eigen-
values. In this paper, we will show that a low-rank approximation
of the modularity matrix can replace its full-rank counterpart in the
DSPCA algorithm, to result in a faster method that still breaks the
detection threshold go the PCA-based algorithm.

4. PERFORMANCE PREDICTION: APPROXIMATION
AND LOWER BOUND

We can approximate the modularity matrix B as the sum of a
real, symmetric matrix X and a rank-1 matrix P = θuuT , where
Xi,j + p ∼ Bernoulli(p), θ = k(1 − p), and u is a vector whose
ith entry ui is 1/

√
k if i ∈ V ∗ and is 0 otherwise. Note X is diago-

nalizable, and we can write X = UTXDUX , where D is a diagonal
matrix of eigenvalues, λ1 ≥ . . . ≥ λn, of X . The spectrum of
X+P is equal to the spectrum ofD+ θũũT , where ũ = UTXu, and
there is a unique mapping between their eigenvectors via UX . Thus,
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as in [13], we will analyze this matrix rather than the modularity
matrix to determine the concentration of u among the eigenvectors.

Computing the principalm-dimensional eigenspace, 1≤m≤n,
can be recast as maximizing the trace for a symmetric orthonormal
projection of the original matrix, i.e.,

U∗ = arg max
U∈Um

tr
“
UT

“
D + θũũT

”
U
”
,

where Um is the set of n ×m matrices with orthonormal columns.
Let:

Vm =

»
Im−1 0m−1

0n−(m−1)×m−1 v

–
,

where v ∈ Rn−(m−1). We will use Vm ∈ Um to get a lower bound
for the representation of ũ in the principal eigenspace, since the first
m− 1 columns disregard the impact of ũ. We know that:

tr
“
U∗

T
“
D + θũũT

”
U∗
”
≥ max

v
tr
“
V Tm (D + θũũT )Vm

”
.

We can rewrite the right-hand side as:

max
v

m−1X
i=1

`
λi + θũ2

i

´
+

nX
i=m

v2
i−m+1λi+θ

 
nX

i=m

ũivi−m+1

!2

. (4)

We will approximate ũ as a vector where each entry is ±1/
√
n with

equal probability. Through introducing a new vector g ∈ Rn, where
gi = ũivi−m+1 for i ≥ m and gi = 0 for i < m, we note that the
quantity in (4) is maximized at the following value of g:

arg max
g

nX
i=m

1

n
g2
i λi + θ

0@ n∑
i=m

1

n
gi

1A2

.

As n→∞, we can recast g as a continuous function, where we will
maximize: Z 1

a

g2(x)λ(x)dx+ θ

„Z 1

a

g(x)dx

«2

,

where m/n → a as n → ∞. Let h(x) = −
R 1

x
g(t)dt, so

h′(x) = g(x). Adding a Lagrange multiplier σ to ensure that g is
unit length, we want to maximize:Z 1

a

g2(x)λ(x)dx+ θ

„Z 1

a

g(x)dx

«2

+ σ

„Z 1

a

g2(x)dx− 1

«
.

Rearranging terms gives us an objective function J , where:

J =

Z 1

a

L(x, h(x), g(x))dx− σ,

L(x, h(x), g(x)) = g2(x)λ(x)− θg(x)h(a) + σg2(x).

Then by the Euler–Lagrange Theorem [14], J is maximized where:

d

dx

∂L

∂g
= 2 [g(x) (λ(x) + σ)]′ = 0,

meaning g(x) (λ(x) + σ) must be a constant c. This yields a for-
mula:

g(x) =
c

λ(x) + σ
,

which can be substituted into the objective function, yielding:

J = c2
 Z 1

a

dx

λ(x) + σ
+ θ

„Z 1

a

dx

λ(x) + σ

«2
!
− σ.

Differentiating with respect to σ, we have:

∂J

∂σ
=

Z 1

a

−c2dx
(λ(x) + σ)2

„
1 + 2θ

„Z 1

a

dx

λ(x) + σ

««
− 1.

With the constraint that g2(x) integrates to 1, we can find the critical
point at Z 1

a

dx

λ(x) + σ
= −1

θ
. (5)

Differentiating with respect to c yields the same equation. We can
use (5) to solve for σ at a given θ, then solve for c by normaliz-
ing the integral to 1. As n → ∞, the distribution of eigenvalues
will converge to a semicircle with radius R =

p
4np(1− p) [15].

Therefore, we can change variables into a space where λ is the de-
pendent variable and x is the cumulative density function of λ. We
achieve this through the following substitution, where γ ranges from
0 to π:

λ(γ) = R cos(γ)

x = f(γ) =
1

π
(γ − sin(2γ)).

Substituting this into (5) gives us:

2

π

Z π

f−1(a)

sin2 γdγ

R cos(γ) + σ
= −1

θ
.

Solving this integral analytically is complicated and beyond the
scope of this paper, but it expresses a relationship between R, a,
and θ that can be computed numerically. Also, since the radius R
of the semicircle determines the detection bound using the PCA
technique, we can use this to characterize the norm of the projection
of ũ onto Vm independent of R by considering θ as a proportion
of the detection threshold. After solving for c, we can return to the
vector formulation:

n∑
i=m

gi/n

c
=

nX
i=m

1/n

λi + σ
≈ −1

θ
.

The square of the L2 norm of the projection of the signal vector ũ
onto the column space of Vm is given by:

‖V Tm ũ‖22 =

m−1X
i=1

ũ2
i +

0@ n∑
i=m

gi

1A2

=
m− 1

n
+
“nc
θ

”2

.

(6)

Then, using (6) we can plot ‖V Tm ũ‖, a lower bound of the pro-
jection of ũ onto U∗, as shown in Fig. 2. The percentages (rela-
tive to the threshold in Theorem 3.1) correspond to cliques of size
k = 10, 8, 6, and 4 embedded into a graph where N = 5000 and
p = 0.01. ‖V Tm ũ‖ is a lower bound for ‖U∗T ũ‖, the projection into
the top m eigenvectors. Even significantly below the PCA detection
threshold, a large portion of the signal vector’s magnitude lies in the
space spanned by a relatively small percentage of eigenvectors.

Fig. 3 compares the prediction to empirical performance. The
black dashed curve is predicted based on the red curve in Fig. 2, the
blue curve uses Vm for a random instantiation, the green curve uses
U∗ when ũ has entries that are ±1/

√
n, and the red curve uses U∗

when ũ each entry is drawn from a standard normal and the vector is
unit-normalized. The approximation where ũ has equal magnitude
in each component is always greater than the lower bound, and we
see similar performance when using a ũ whose entries are drawn
from a normal distribution.
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Fig. 2. L2 norm of V Tm ũ for different clique sizes.

5. SIMULATION RESULTS

When an approximation of the modularity matrix is used, we obtain
Bm, a rank-m approximation of B, by keeping the first m terms of
its eigendecomposition:

Bm =

mX
i=1

λiuiu
T
i ,

where λi is the ith largest eigenvalue of B, and ui is the corre-
sponding eigenvector. We will evaluate how the performance of the
DSPCA algorithm varies as a function of m through generating re-
ceiver operating characteristic (ROC) curves that use the entries of
the vector returned by DSPCA as test statistics.

The results in this section demonstrate the outcomes of 100-trial
Monte Carlo simulations. In each simulation, an Erdős-Rényi graph
G(500, 0.2) is generated, and a clique of size k = 8 or k = 10 is
embedded on a subset of its vertices. Fig. 4 demonstrates that, even
within the regime below the threshold elucidated in Theorem 3.1 (in
this case approximately 11.18), most of the power is in the upper
eigenvectors. The DSPCA solution to the planted clique problem
represents a significant improvement over PCA methods, even in the
case of small m.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated that applying DSPCA to a low-
rank approximation of the graph’s modularity matrix is a viable al-
gorithm to solve the planted clique problem. When the size of a
planted clique is reduced below the threshold where it is detectable
via PCA, it may still be well-represented in relatively few principal
eigenvectors, which enables higher detection performance in a low-
dimensional space. One future direction involves determining the
detection threshold for SPCA algorithms. We are currently working
on quantifying the breakdown point for the DSPCA approach, us-
ing either the modularity matrix or its rank-m approximation, to the
planted clique problem. Since SPCA is NP-hard and thus compu-
tationally intractable, all existing algorithmic approaches motivated
by SPCA are relaxations of the initial formulation described in (2).
Alternative SPCA algorithms could prove to have higher detection
power than DSPCA.
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Fig. 3. Norm of ũ when projected into the principal eigenspace, for
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unit hypersphere. Error bars indicate the maximum and minimum
over 10 random instantiations.
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Fig. 4. DSPCA detection performance for several values of m, for
G(500, 0.2) and k = 8 (a) or k = 10 (b).

Other future work involves studying the relationship between the
parameter ρ in DSPCA and the associated false-alarm probability
of the algorithm. This will involve analyzing the noise characteris-
tics as more eigenvectors are added. Combined with some more ex-
tensive Monte Carlo simulations over the various parameters of the
model, this could reveal a method to directly compute a detectability
bound based on the background parameters, foreground parameters,
and number of eigenvectors used.
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