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ABSTRACT

Reinforcement Learning (RL) is an attractive tool for learning

optimal controllers in the sense of a given reward function. In

conventional RL, usually an expert is required to design the

reward function as the efficiency of RL strongly depends on

the latter. An alternative has been presented by the concept

of Inverse Reinforcement Learning (IRL), where the reward

function is estimated from observed data. In this work, we

propose a novel approach for IRL based on a generative prob-

abilistic model of RL. We derive an Expectation Maximiza-

tion algorithm that is able to simultaneously estimate the re-

ward and the optimal policy for finite state and action spaces,

which can be easily extended for the infinite cases. By means

of two toy examples, we show that the proposed algorithm

works well even with a low number of observations and con-

verges after only a few iterations.

Index Terms— Expectation Maximization, Inverse Rein-

forcement Learning, Markov Decision Process

1. INTRODUCTION

Many applications today lack the flexibility to reproduce or

imitate natural behavior. This has become especially impor-

tant in the recent past for systems that are supposed to adapt

to or infer the intent of the user, e.g. in driving assistance ap-

plications [1, 2, 3], language understanding [4, 5, 6] or com-

munications [7, 8]. In this work, we present an algorithm

that learns from observations to perform complex tasks in the

framework of Reinforcement Learning (RL). RL is a pow-

erful tool when only little knowledge about the environment

is available. One of the best examples is found in robotics,

where agents (robots) are supposed to teach themselves, e.g.

how to find optimal paths in a building. However, RL requires

knowledge about the reward an agent receives for each state,

which can be considered as an attraction to a certain state.

In practice, it is often difficult to design the so-called reward

function, thus usually expert knowledge is required.

Inverse Reinforcement Learning (IRL), also known as Inverse

Optimal Control, aims at solving this problem by learning the

reward function from observations. Based on the estimated

reward function, the policy, i.e. the optimal action for each

state, is derived. One of the first approaches was presented in

2000 by Ng and Sutton [9]. The key idea of their presented al-

gorithm is to alternatively estimate the reward and the policy

by iteratively maximizing the difference between the current

and previous policy, both depending on the estimated rewards,

with respect to derived expected return.

Further methods have been presented in the subsequent years.

Similar to the work in [9], Abbeel and Ng presented a max-

margin approach and a simplified version, the so-called pro-

jection method [10]. A Bayesian approach has been sug-

gested by Ramachandran and Amir [11]. As IRL is an ill-

posed problem [9] due to the fact that many reward functions

imply the same set of optimal policies, Ramachandran and

Amir suggest to average over all possible reward functions

where the likelihood is described by an exponential function

on the observed trajectories. As prior probability distribu-

tion, several application dependent models were investigated.

Ziebart et al. [12] proposed to solve the ill-posed problem us-

ing a maximum entropy based approach. Here, the key idea

is to find a distribution of the rewards so that the observed

paths are explained best. Levine et al. [13] extended this ap-

proach to continuous state spaces by employing a Gaussian

Process model to interpolate over unobserved states. In con-

trast to previous work, this approach allows for learning non-

linear functions leading to more accurate results.

However, none of the previous methods considered the RL

problem in a generative, probabilistic fashion. The original

paper by Toussaint and Storky [14] shows how RL can be

understood as a Bayesian network, enabling the use of infer-

ence techniques for RL [15]. As an example, they propose

an efficient Expectation Maximization (EM) [16] algorithm

to estimate an optimal policy.

In this work, we show how to use the generative model pre-

sented in [14] to simultaneously estimate the reward and pol-

icy given observations following an optimal policy. We pro-

vide a general problem formulation based on EM and solve it

for the case of finite state and action spaces, which leads to
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an algorithm that converges after only a few iterations. The

proposed framework can directly be used to derive algorithms

for the case of infinite state and action spaces.

In Section 2, we provide a brief introduction into Markov De-

cision Processes as this forms the basis for the mixture model.

Section 3 explains how RL can be seen as an inference prob-

lem in a Bayesian network. This model is then used in Sec-

tion 4 to derive an EM algorithm for IRL. The results in Sec-

tion 5 demonstrate the performance of the algorithm. Finally,

a conclusion is drawn and a short outlook is given in Sec-

tion 6.

2. MARKOV DECISION PROCESSES

Many RL problems can be formulated as Markov Decision

Processes (MDPs). A finite MDP is defined by

• a set of N states, S = {s1, s2, . . . , sN}
• a set of M actions, A = {a1, a2, . . . , aM}
• the transition probability P (s′|s, a) describing the

probability of entering state s′ given state s and taking

action a which can be considered as the model of the

world and the agent

• the discount factor γ ∈ [0, 1)
• and the reward function R : S ×A → ❘ with absolute

value bounded by Rmax ∈ ❘
In a standard RL problem, the goal is to find the action that

maximizes the expected discounted return or value V (s) for

each state,

V (s) = E[R(st=0) + γR(st=1) + γ2R(st=2) + . . .] (1)

i.e. to find the optimal policy. The expected return informs the

agent what return to expect when acting according to the pol-

icy at time steps t = 1, 2, . . . and can be estimated by means

of the Bellman equations [17, 18]. Note that depending on the

application, the reward function depends on the state and the

action as well. In contrast to RL, in an IRL setup the reward

function R(s, a) is unknown and needs to be estimated.

3. MIXTURE MODEL

Toussaint and Storkey [14] propose to model the joint prob-

ability of a trajectory of length K and the obtained rewards,

p(r, s1:K , a1:K), as a mixture where the mixture components

have length k, k = 1, . . . ,K and a reward is obtained only at

the end of each component. The probability of a component

is given by

p(r, s1:k, a1:k|k) = p(s1)p(a1|s1)

×
k
∏

n=2

p(sn|sn−1, an−1)p(an|sn).

× p(r|sk, ak)

(2)

with known initial state distribution p(s1).

It can be shown that the discount γ can be represented

by a weighting with a geometric distribution p(k) [14], also

referred to as time prior. For reasons given in [14], it is conve-

nient to assume that the probability of the reward is equal to

the reward itself, i.e. p(r|sk, ak) = R(s, a). Hence, it must

hold that R(s, a) is bounded by 0 ≤ R(s, a) ≤ Rmax = 1.

The mixture model is then given by the marginal over k, i.e.

p(r, s1:K , a1:K) =

K
∑

k=1

p(r, s1:k, a1:k|k)p(k) (3)

A key result by Toussaint and Storkey is the fact that the

marginal p(r, sn, an) =
∫

p(r, s1:K , a1:K)ds1:K\nda1:K\n

can be efficiently calculated in a recursive manner [14]. Based

on this, they proposed an EM algorithm to estimate the pa-

rameters θπ of the policy given as p(a|s).

4. INVERSE REINFORCEMENT LEARNING USING

A MIXTURE MODEL

We propose to model the reward function as a mixture

with M mixture components and basis functions φm(s, a),
m = 1, . . . ,M , i.e.

R(s, a) =

M
∑

m=1

wmφm(s, a) = w
T
Φ(s, a) (4)

with unknown weights wm, 0 ≤ wm ≤ 1 and m = 1, . . . ,M .

The reward r is assumed to be Gaussian distributed with vari-

ance σ2
r , i.e.

p(r|s, a) = N
(

r|R(s, a), σ2
r

)

. (5)

The goal is to estimate the weights w of the reward function

as well as the parameters θπ of the policy. The complete set of

parameters to be estimated is denoted by θ = {w1, . . . , wM} ∪ θπ .

Assume we are given a set of L trajectories, each of length

K,

T = {(s
(1)
1 , . . . , s

(1)
K ), . . . , (s

(L)
1 , . . . , s

(L)
K )}, (6)

that follow an optimal policy, leading the agent to a positive

reward. Since the reward and policy are hidden random vari-

ables, we propose an EM algorithm similar to [14], while con-

ditioning on the observed trajectories.

Assuming independent trajectories, the complete data likeli-

hood is given by

L(θ|T , k, r) = pθ(T , r, k)

=

L
∏

l=1

pθ(a
(l)
1:k, s

(l)
1:k, r|k)p(k)

∝
L
∏

l=1

(

k
∏

n=1

pθ(a
(l)
n |s(l)n )

)

pθ(r|s
(l)
k , a

(l)
k ),
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depending on both observed and hidden variables. Thus, the

expected log likelihood function Q can be written as

Q(θ|θ′) = Ep
θ′
(k,r|T )[log(pθ(T , r, k)]

=

∫ ∞
∑

k=1

pθ′(k, r|T ) log (pθ (T , r, k)) dr

=

∫ ∞
∑

k=1

pθ′(k, r|T )

(

L
∑

l=1

(

log pθ(r|s
(l)
k , a

(l)
k )

+

k
∑

n=1

log pθ(a
(l)
n |s(l)n )

)

)

dr + const.

with θ′ denoting the parameters resulting from the previous

iteration of the EM algorithm. Recalling the constraints on the

weights and reward function, the maximization step is then

formulated as a constraint optimization problem,

θ̂ =argmax
θ

Q(θ, θ′)

s.t.

M
∑

m=1

wm = 1

wm ≥ 0 ∀m ∈ {1, . . . ,M}.

(7)

In order to solve the sum constraint, a Lagrangian function is

used, i.e.

L(w, λ) = Q(θ, θ′) + λ(1−
M
∑

m=1

wm) (8)

with Lagrangian multiplier λ. Calculating ∂L
∂wi

for i = 1, . . . , P ,

we obtain

∂L

∂wi

=

∫ ∞
∑

k=1

pθ′(k, r|T )

(

L
∑

l=1

−
1

σ2
r

(

r −w
T
Φ(s

(l)
k , a

(l)
k )
)

(

−Φi(s
(l)
k , a

(l)
k )
)

dr

)

− λ.

= −
1

σ2
r

K
∑

k=1

p(k)

(

L
∏

l=1

Rθ′(s
(l)
k , a

(l)
k )

)

L
∑

l=1

Φi(s
(l)
k , a

(l)
k )

+
1

σ2
r

∞
∑

k=1

p(k)

L
∑

l=1

w
T
Φ(s

(l)
k , a

(l)
k )Φi(s

(l)
k , a

(l)
k )− λ

where we assumed that k and r are independent and k is in-

dependent of T . Further, recall that the expected value of r is

R(s, a). Replacing λ = 1
σ2
r

λ̃ and
∏L

l=1 Rθ′(s
(l)
k , a

(l)
k ) = RT

θ′

and setting ∂L
∂wi

= 0, results in

λ̃ =

∞
∑

k=1

p(k)

(

RT
θ′

L
∑

l=1

Φi(s
(l)
k , a

(l)
k )

−
L
∑

l=1

(wT
Φ(s

(l)
k , a

(l)
k )Φi(s

(l)
k , a

(l)
k )

)

.

(9)

The Lagrangian multiplier λ̃ can be substituted by any of the

P equations, e.g. the first. Then, we obtain for the remaining

equations, i = 2, . . . , P ,

∞
∑

k=1

p(k)

(

RT
θ′

L
∑

l=1

Φi(s
(l)
k , a

(l)
k )− Φ1(s

(l)
k , a

(l)
k )

)

= w
T

∞
∑

k=1

p(k)

(

L
∑

l=1

(Φ(s
(l)
k , a

(l)
k )(Φi(s

(l)
k , a

(l)
k )− Φ1(s

(l)
k , a

(l)
k )

)

and with
∂L(w,λ)

∂λ
= 1−

∑M

m=1 wm, this can be written as an

equation system,

Aw = b

s.t. wm ≥ 0 ∀m ∈ {1, . . . ,M}
(10)

where

A =















∑∞
k p(k)

(

∑L

l (Φ
T (s

(l)
k , a

(l)
k )(Φ2(s

(l)
k , a

(l)
k )− Φ1(s

(l)
k , a

(l)
k )
)

...
∑∞

k p(k)
(

∑L

l (Φ
T (s

(l)
k , a

(l)
k )(ΦM (s

(l)
k , a

(l)
k )− Φ1(s

(l)
k , a

(l)
k )
)

[1, . . . , 1]















T

and

b =















∑∞
k p(k)

(

RT
θ′

∑L

l Φ2(s
(l)
k , a

(l)
k )− Φ1(s

(l)
k , a

(l)
k )
)

...
∑∞

k p(k)
(

RT
θ′

∑L

l ΦM (s
(l)
k , a

(l)
k )− Φ1(s

(l)
k , a

(l)
k )
)

1















.

Eq. (10) can be efficiently solved by a non-negative least

squares algorithm [19]. Since an estimate of the reward is

given now, the algorithms presented in [14] or [15] can be

used to estimate the parameters, θπ , of the policy.

Note that, in practical problems the product in RT
θ′ is

likely to tend to zero and may cause numerical problems.

Since we assume that the observed trajectories lead to a

high positive reward, the product can be approximated by
∏L

l=1 R(s
(l)
k , a

(l)
k ) = (Rmax)

L = 1. Thus, the estimate of

the weights does no longer depend on previous iterations.

Then, an initialization of the weights is not required since an

estimate of weights is given as a closed-form solution.

5. SIMULATIONS

In order to demonstrate the performance of the presented

framework and the derived algorithm, we show two toy ex-

amples similar as the ones in [10]. Since we consider finite

state and action spaces, we choose a simple dirac function as

the basis function for the reward.

First, we consider the maze shown in Fig. 1 with rewards

in the upper right, upper left, lower right corners and the
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Fig. 1: Histogram of observed states (left), estimated rewards (center) for L = 100, policy and true reward of the maze example

(right). Arrows indicate the policy and zero reward.

center (highlighted in green) and a state space consisting of

57 elements. We allow the agent to take the actions of going

north, south, east and west where there is a 30% chance of

failure, meaning that the agent moves in a random direction.

Probabilities that would lead outside the maze are added to

the probability of staying in the current state to ensure that

the agent is always in a valid state.
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Fig. 2: Accuracy of reproducing the policy for the maze

Applying the proposed algorithm for L = 100 obser-

vations, we obtain the estimated reward shown in Fig. 2.

Inspecting the histograms of the given trajectories, we ob-

serve that only three states have been visited frequently. The

result shows that the reward function has been well recon-

structed. Further, high accuracy in reproducing the policy

from observed data is achieved even for low number of obser-

vations, outperforming other algorithms (IRL-EM:proposed,

AN:[10], MaxEnt:[12]).

host vehicle traffic

Fig. 3: Screenshot of the driving simulator

Second, we implemented a simple highway scenario as in

[10]. The agent, the host vehicle, is driving on a highway

with three lanes (Fig. 3). The goal is to drive as fast as pos-

sible without causing an accident. The speed of the traffic

depends on the lane the vehicles travel on, increasing from

the right to left lane. A dynamic scenario is given by ran-

dom lane changes of the vehicles. Note that the host vehicle

aims at driving faster than the traffic. Since accidents shall

be avoided and overtaking maneuvers are not always possi-

ble, the host can take four different speeds. However, if the

lanes are free, the host may change the lane as well (and at

the same time change the speed), resulting in twelve differ-

ent actions in total. A state is defined by the current lane and

velocity of the host vehicle, and the information whether the

lanes are blocked, leading to 36 states in total. We used 200

snapshots with a length of 5 steps from three different expert

demonstrations to learn the following driving styles:

• aggressive: as fast as possible, overtaking on all lanes

but avoid collisions

• bad: hit as many obstacles as possible

• legal: avoid collision and do not overtake from the right

The true rewards for these driving styles are unknown, thus a

numerical evaluation is difficult. However, with a sufficient

number of training data (basically all states have to be cov-

ered), the agent is well able to reproduce the demonstrated

driving style. Short videos for the different driving styles can

be found on http://www.spg.tu-darmstadt.de/res/dl/.

6. CONCLUSION

Based on a mixture model framework for Reinforcement

Learning, we presented an algorithm to estimate the reward

and policy given observations. Thus, rewards as in classical

RL do not need to be defined by an expert in advance, but

are estimated from observed optimal behavior. The presented

algorithm is based on a probabilistic generative model, en-

abling the use of a broad range of inference techniques for

IRL. The results show that the algorithm works well in finite

state spaces. Future research will concentrate on transferring

these results to infinite state spaces and easing the limitations

on the reward function, increasing the applicability of this

framework to a wider field of problems.
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