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ABSTRACT

This paper proposes a parameters estimation algorithm for signals
composed of multiple non-stationary components having the same
basis modulation function which is described by an a priori known
model and depends on a few unknown parameters. The procedure is
based on time warping the signal in turn with every basis function
resulted from different model parameters combinations and evaluat-
ing the concentration of the warped signal spectrum. The estimated
parameters of the model are the ones which provide the best spectral
concentration. Onwards, the amplitude, phase and modulation rate
for each component are determined from the signal warped with the
optimal basis function. The algorithm is tested with simulations and
real data consisting of de-chirped radar signals and acoustic signals
with harmonic components from underwater mammals.

Index Terms— Non-stationary signals; Time-frequency analy-
sis; Warping; Signal Representation.

1. INTRODUCTION

In many signal processing applications the analyzed signals are non-
stationary in the sense that the frequency changes over time and are
comprised of multiple components each having its particular instan-
taneous frequency law (IFL). Most of the times the phase function
of an analytic non-stationary component can be described by a para-
metric model. If there is no a priori information of the signal’s na-
ture, a widely employed model is the polynomial phase signal (PPS)
model based on the Weierstrass approximation theorem. Typical pa-
rameters estimation methods for PPSs with multiple components are
based on the high-order ambiguity function (HAF) [1, 2, 3, 4] or
on nonlinear least squares approaches [5]. These algorithms have to
deal with specific problems of multi-component signals: the interac-
tion between the components which may lead to cross-terms and the
inability to successively demodulate and separate a certain compo-
nent in the presence of others.

When the time-frequency shape of the components forming the
signal is known, the parameters estimation can be accomplished us-
ing a matched signal transform (MST) [6, 7] which localizes sig-
nals with a certain nonlinear characteristic basis function at their
frequency modulation (FM) rate in the same manner as the Fourier
transform localizes sinusoids at their frequencies. Moreover, such a
transform avoids the cross-terms problem because it includes an am-
plitude modulation with the basis function’s IFL which makes the
components orthonormal [8]. Various classical transforms are ac-
tually MSTs such as the Mellin transform [9, 10], the k-th power
transform [8] or the exponential transform [11].

As a trade-off between the PPS estimation techniques and the
MST approach, this paper addresses the problem of estimating the
parameters of a non-stationary signal comprised of multiple com-
ponents with the same time-frequency shape when the basis mod-
ulation function is only partially known and depends on a few pa-
rameters which also have to be estimated. The proposed approach
is based on time warping the given signal with different parametric
functions and identifying for which parameters the warped signal has
the best spectral concentration. The cost function used for evaluating
the spectral concentration is derived from the measures designed to
evaluate time-frequency distributions concentration [12].

Notice that the method proposed in this paper can be viewed as a
generalization of some chirp rate estimation methods based on vari-
ous transforms: the fan-chirp transform [13], the adaptive harmonic
fractional Fourier transform [14] or the multiangle centered discrete
fractional Fourier transform [15]. More specifically, in comparison
with the previously mentioned works, the basis modulation function
can be any kind of monotonic one-to-one function depending on cer-
tain parameters (not only a second order polynomial depending on
the chirp rate).

This paper is organized as follows. Section II describes the pro-
posed parameters estimation method in three parts. The time warp-
ing approach is discussed first. Afterwards we introduce the spec-
tral concentration measure followed by the discrete signal model and
Cramér-Rao bound computation. In Section III the algorithm is ap-
plied on synthetic signals and real data. The conclusions are stated
in Section IV.

2. ESTIMATION METHOD

2.1. Time warping

We consider a signal consisting of a sum of non-stationary com-
ponents each having the same time-frequency shape described by a
monotonic one-to-one function of time θ(t) (a basis function) de-
fined on the interval [0, T ]. Such a signal with K components can
be written as

s(t) =

K∑
k=1

ak exp {j(ϕk + αkθ(t))} , (1)

where ak, ϕk and αk are respectively the amplitude, phase and mod-
ulation rate of component k. If the signal in (1) is viewed in a warped
time axis θ = θ(t) it will appear as a signal composed of a sum of
complex sinusoids

s(θ) =

K∑
k=1

ak exp {j(ϕk + αkθ)} . (2)
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The Fourier transform of (2)

S(α) =

θ(T )∫
θ(0)

s(θ) exp (−j2παθ) dθ. (3)

will give peaks at the modulation rates αk of theK components. The
transform in (3) can also be computed in terms of the initial time axis
as

S(α) =

T∫
0

|θ′(t)|s(t) exp (−j2παθ(t)) dt. (4)

Notice that (4) is actually a modified form of the MST applied for
the basis function θ(t). Additionally, the squared magnitude of the
MST is a maximum likelihood (ML) estimator for the modulation
rate of signals with a certain characteristic function in the same way
as the periodogram is a ML estimator for the frequency of sinusoidal
signals [7].

In this context, the goal of this work is to extend the MST (based
on time warping) for parameters estimation of signals having the
form in (1) when the basis function θ(t) is partially known and de-
pends on a few parameters which also have to be determined. Thus,
we introduce the notation θp(t) for a basis function depending on the
vector p = [p1, p2, ..., pL]

T which contains the model parameters.

2.2. Spectral concentration as a cost function

A criteria for evaluating the quality of a time-frequency represen-
tation is the concentration. A better concentration in the time-
frequency plane means that the signal’s energy is focused in a
smaller region and consequently any detection or estimation per-
formed in the time-frequency plane is expected to be more reliable
[12]. Several concentration measures have been proposed in litera-
ture which are based on distribution norms [16, 17, 18] or have been
derived from a classical definition of a time-limited signal’s duration
[19]. Each of these concentration measures can be applied only over
frequency to obtain a measure of the spectral concentration.

Typically, a measure of concentration is used to determine an op-
timum parameter in a time-frequency representation (e.g. the win-
dow length for a spectrogram). However, such a measure can also be
used to estimate the unknown parameters of the basis function θp(t).
The idea is to warp the signal in (1) with different test functions ob-
tained for various values assigned to the parameters. When the test
function matches the real basis function, the warped signal will es-
sentially be a sum of complex sinusoids and its spectrum will have
the highest degree of concentration. Consequently, a concentration
measure applied to the warped signal’s spectrum Sp(α) will reach
its optimum value when the warping is done with the optimal basis
function. So the measure of concentration can be viewed as a cost
function which has to be minimized with respect to some model pa-
rameters describing θp(t). After the optimal model parameters are
determined, the amplitude, phase and modulation rate of each com-
ponent can be extracted from the optimal power spectrum |Sopt(α)|2
obtained from the signal s(t) warped with the best-matched basis
function.

We have chosen for the proposed estimation method the spectral
concentration measure from [19] because in the optimization pro-
cess it searches for a compromise such that all components are well
concentrated and does not favor peaky components over others. This
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Fig. 1. Estimation algorithm diagram for the single parameter case.

measure is defined as

M(p) =

 αM∫
−αM

|Sp(α)| dα

2/ αM∫
−αM

|Sp(α)|2 dα

 , (5)

where [−αM , αM ] is the support of the warped signal’s spectrum. A
diagram of the proposed algorithm in the case when the model has
only one parameter p is shown in Fig. 1. Because the method re-
quires a grid search which can get computationally demanding for a
large number of parameters, we limit the examples to basis functions
with one or two parameters. This drawback could be addressed by
employing adaptive techniques used for finding the optimum param-
eters for time-frequency representations [12], but this is out of the
scope of this paper.

2.3. Discrete signal model and the Cramér-Rao bound

In the discrete signal model we add noise and consider the basis
function dependent on the parameters vector p. So the discrete
form s[n] of the signal in (1) uniformly sampled at N time instants
t0, t1, ..., tN−1 embedded in a white circular Gaussian noise w[n]
with variance σ2 is expressed as

x[n] =

K∑
k=1

sk[n] + w[n] (6)

where
sk[n] = ak exp {j [ϕk + αkθp(tn)]} . (7)

We introduce the following notations: a = [a1, a2, ..., aK ]T , ϕ =
[ϕ1, ϕ2, ..., ϕK ]T , α = [α1, α2, ..., αK ]T , sk = [sk[0], sk[1], ...,
sk[N − 1]]T and w = [w[0], w[1], ..., w[N − 1]]T . The signal in
(6) can be rewritten in vectorial forms as

x = s+w =

K∑
k=1

sk +w (8)

and the set of unknown parameters that have to be estimated is ϑ =
(pT ,aT ,ϕT ,αT )T .

Note that in a warped time axis θ, the samples of x[n] are related
to the time instants θn = θ(tn) which leads to a non-uniformly sam-
pled signal. Consequently the computation of the Fourier transform
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of x[n] in the θ time axis can be efficiently implemented by a re-
sampling of the initial signal (to obtain a uniformly sampled signal)
followed by a Fast Fourier Transform (FFT). So an MST could be
performed directly by applying (4), but the advantage of the time
warping approach is the computation efficiency.

The Cramér-Rao (CRB) bound for the parameters that have to
be estimated can be computed as follows. From [20] the elements of
the Fisher’s information matrix are

Iij =
2

σ2
Re

{
∂sH

∂ϑi

∂s

∂ϑj

}
. (9)

It can be shown that each vector from this expression can take the
following four forms depending with respect to which parameter is
the derivative taken:
∂s

∂pl
= {[s1 s2 ... sK ]α} ◦ j

[
∂θp(t0)

∂pl
,
∂θp(t1)

∂pl
, ...,

∂θp(tN−1)

∂pl

]T
∂s

∂ak
= sk

∂s

∂φk
= jsk

∂s

∂αk
= jsk ◦ [θp(t0), θp(t1), ..., θp(tN−1)]

T

(10)
where ◦ denotes the element-wise product. After computing the in-
formation matrix I the Cramér-Rao bounds on the variances of the
estimates are expressed as diag(I−1). Notice that due to the pres-
ence of multiple components the bounds will depend on the param-
eters’ values and don’t have a straight forward analytic expression,
but can be numerically computed. A similar situation was reported
in [5] for multi-component PPSs.

3. RESULTS

In this section the proposed estimation algorithm is applied first on
a synthetic signal and then in two different practical contexts - as a
nonlinearity correction algorithm for frequency modulated continu-
ous wave (FMCW) radars and as kernel in a time-frequency tracking
procedure for signals with harmonics.

3.1. Simulations

We consider a signal with three components whose parameters are
a = (1, 1, 1), ϕ = (0, π/2, π), α = (25, 50, 100). The basis
function depends on a parameter p and has the form

θp(t) = t+ tr

(
t

tr

)p
, (11)

where tr is considered equal to one and was added only for units
of measurement consistency. The true value for p is set to 3 and
the search interval is considered [2, 4]. The signal’s duration is 1 s
and the number of samples is 2000. The estimation algorithm was
applied for a signal-to-noise ratio (SNR) of 20 dB and the resulting
measure of concentration versus p is shown in Fig. 2. The spectro-
grams of the initial signal and of the signal warped with the optimal
function are shown in Figs. 3(a) and 3(b), respectively.

To evaluate the performance of the method regarding the esti-
mation of the model parameters, the mean error and variance of the
proposed estimator for parameter p were obtained with Monte Carlo
simulations on 1000 realizations for each SNR value. Additionally,
the CRB was numerically computed. The results are presented in
Fig. 4.
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Fig. 2. Measure of concentration versus the model parameter p.
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Fig. 3. Spectrograms of the simulated synthetic signal: (a) in the
original time axis and (b) in the warped time axis for the optimal
basis function.

3.2. FMCW radar nonlinearity correction

A typical issue of an FMCW radar is that the voltage controlled os-
cillator (VCO) adds a certain degree of nonlinearity which leads to a
deteriorated resolution by spreading the targets’ energy through dif-
ferent frequencies. For many VCOs the frequency-voltage charac-
teristic can be approximated by a third order polynomial expression.
Under this assumption it can be shown [21] that in the case of a lin-
ear tuning voltage the beat signal forK targets resulted from mixing
the received signal with the local oscillator is expressed in a sweep
period T as

sb(t) =

K∑
k=1

ak exp

{
j

[
ϕk +

2rk
c0
β0
(
t+ p1t

2 + p2t
3)]} ,

(12)
where c0 is the speed of light, β0 is the chirp rate in the origin, rk
is the range of target k and p1,2 are the coefficients describing the
nonlinearity. Notice that the beat signal can be brought to the form
in (1) by taking the basis function

θp1,p2(t) = t+ p1t
2 + p2t

3. (13)
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Fig. 4. Mean error (a) and variance (b) of the estimator for parameter
p obtained with Monte Carlo simulations on 1000 realizations.
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By applying the proposed algorithm on the beat signal, the nonlin-
earity coefficients are determined and the range profile (computed
as the Fourier transform of the signal warped with the optimal basis
function) gets corrected of nonlinearities. Fig. 5 shows the range
profiles obtained with the short-range X-band radar platform pre-
sented in [22] for a scene with two targets (placed approximatively
at 1 m and 4.5 m from the radar, respectively) before and after the
nonlinearity correction. For each range profile, a Blackman window
was applied before the FFT. In the initial range profile, the targets’
energies are spread in frequency while in the corrected one the tar-
gets appear as clear peaks. Note that this nonlinearity correction
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Fig. 5. Range profiles for a short-range X-band FMCW radar be-
fore and after nonlinearity correction with the concentration measure
method.

algorithm based on the measure of concentration can be applied dis-
regarding the number of targets and can be viewed as an upgrade
of the HAF-based algorithm presented in [23] where a reference re-
sponse was needed. For comparison, in Table 1 we present the half
power lobe width (at 3 GHz bandwidth) obtained with the method
proposed in this paper for the target placed at 4.5 m in comparison
with the lobe width obtained with the HAF-based correction method
when the two targets are in turn used as reference responses. When
the correction is applied to a quite different range interval than that
of the considered reference target (e.g., to the target placed at 4.5
m when the nonlinearity parameters are estimated using the target
placed at 1 m) the HAF-based correction is outperformed by the
concentration measure approach. Conversely, when the nonlinear-
ity estimation and correction are done for the same target, the two
methods have similar performances.

Table 1. Nonlinearity Correction Algorithms: -3 dB lobe widths
comparison for the target placed at 4.5 m from the radar.

Algorithm Lobe width (cm)

Concentration measure 10.70

HAF, reference at 4.5 m 10.87

HAF, reference at 1 m 12.17

3.3. Time-Frequency tracking

The parameters estimation algorithm proposed in this paper can be
easily applied for time-frequency tracking of non-stationary signals
composed of multiple harmonics. We emphasis this by analyzing a

t [s]

F
 [

H
z
]

 

 

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1000

2000

3000

4000

5000

6000

7000

−70

−60

−50

−40

−30

−20

−10

0

Fig. 6. Spectrogram of a humpback whale vocalizations superim-
posed with the identified time-frequency trajectories.

signal consisting in vocalizations of humpback whales which con-
tain a fundamental component and several harmonics. The signal is
divided in several non-overlapping windows and for each of them
the estimation algorithm is applied using the basis function given in
(13) which implies that for each window, the IFL of every compo-
nent will be approximated by a second-order polynomial expression.
Because the components that have to be tracked are in harmonic re-
lation, the signal obtained in every window has the form in (1) with
the particularity that the modulation rate αk will be an integer multi-
ple of the fundamental’s modulation rate α1. By locally warping the
signal with the optimal basis function all the non-stationary harmon-
ics become sinusoids in harmonic relation. The estimated modula-
tion rates are the frequencies of these sinusoids in the warped time
axis. The IFLs in each window can be easily computed using the
estimated basis function and the modulation rates.

In the conducted analysis we considered only the signals hav-
ing in addition to the fundamental component at least the next two
consecutive harmonics. The time-frequency trajectories obtained by
joining the estimated IFLs are shown superimposed on the spectro-
gram of the analyzed signal in Fig. 6. This tracking method simulta-
neously finds the harmonics in a given window and can be applied in
extraction and classification of time-frequency contours [24]. How-
ever, the procedure is limited to signals composed from a fundamen-
tal component and a number of harmonics in comparison to other
multi-component time-frequency tracking approaches [4, 25].

4. CONCLUSIONS

In this paper we have proposed a parameters estimation technique
designed for signals consisting of multiple components modulated
with the same basis function which depends on a few parameters.
The algorithm is based on warping the signal according to different
modulation functions obtained for various parameters and selecting
as the best-matched function the one that delivers the highest spectral
concentration of the warped signal.

The proposed approach is conceptually situated between the
matched signal transform and the typical polynomial phase estima-
tion algorithms. Therefore, on one hand has the advantage that can
naturally deal with multiple components, but on the other hand re-
quires that all the components should obey an a priori known model.
In future work, a more extensive comparison between the proposed
method and other multi-component estimation algorithms will be
performed in terms of theoretical performances and application
oriented aspects.

3709



5. REFERENCES

[1] S. Peleg and B. Porat, “Estimation and classification of signals
with polynomial phase,” IEEE Transactions on Information
Theory, vol. 37, no. 2, pp. 422–430, March 1991.

[2] Y. Wang and G. Zhou, “On the use of high order ambiguity
functions for multicomponent polynomial phase signals,” Sig-
nal Processing, vol. 65, no. 2, pp. 283–296, March 1998.

[3] S. Barbarossa, A. Scaglione, and G. B. Giannakis, “Prod-
uct high-order ambiguity function for multicomponent
polynomial-phase signal modeling,” IEEE Transactions on
Signal Processing, vol. 46, no. 3, pp. 691–708, March 1998.

[4] C. Ioana and A. Quinquis, “Time-frequency analysis using
warped-based high-order phase modeling,” EURASIP Journal
on Applied Signal Processing, vol. 17, pp. 2856–2873, 2005.

[5] D.-S. Pham and A.M. Zoubir, “Analysis of multicomponent
polynomial phase signals,” IEEE Transactions on Signal Pro-
cessing, vol. 55, no. 1, pp. 56–65, January 2007.

[6] A. Papandreou-Suppappola, “Generalized time-shift covariant
quadratic time-frequency representations with arbitrary group
delays,” in Conference Record of the Twenty-Ninth Asilomar
Conference on Signals, Systems and Computers, October 1995,
vol. 1, pp. 553–557.

[7] H. Shen and A. Papandreou-Suppappola, “Wideband time-
varying interference suppression using matched signal trans-
forms,” IEEE Transactions on Signal Processing, vol. 53, no.
7, pp. 2607–2612, July 2005.

[8] A. Papandreou-Suppappola, F. Hlawatsch, and G. F.
Boudreaux-Bartels, “Quadratic time-frequency representations
with scale covariance and generalized time-shift covariance:
A unified framework for the affine, hyperbolic, and power
classes,” Digital Signal Processing, vol. 8, no. 1, pp. 3 – 48,
January 1998.

[9] A. Papandreou, F. Hlawatsch, and G.F. Boudreaux-Bartels,
“The hyperbolic class of quadratic time-frequency representa-
tions. I. Constant-Q warping, the hyperbolic paradigm, proper-
ties, and members,” IEEE Transactions on Signal Processing,
vol. 41, no. 12, pp. 3425–3444, December 1993.

[10] J.-P. Ovarlez, J. Bertrand, and P. Bertrand, “Computation of
affine time-frequency distributions using the fast Mellin trans-
form,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, March 1992, vol. 5,
pp. 117–120.

[11] A. Papandreou-Suppappola and G.F. Boudreaux-Bartels,
“The exponential class and generalized time-shift covariant
quadratic time-frequency representations,” in Proceedings of
the IEEE-SP International Symposium on Time-Frequency and
Time-Scale Analysis, June 1996, pp. 429–432.

[12] L. Stankovic, M. Dakovic, and T. Thayaparan, Time-Frequency
Signal Analysis with Applications, Artech House, Boston,
2013.

[13] L. Weruaga and M. Kepesi, “The fan-chirp transform for non-
stationary harmonic signals,” Signal Processing, vol. 87, no. 6,
pp. 1504–1522, June 2007.

[14] F. Zhang, Y. Q. Chen, and G. Bi, “Adaptive harmonic fractional
Fourier transform,” IEEE Signal Processing Letters, vol. 6, no.
11, pp. 281–283, Nov 1999.

[15] J.G. Vargas-Rubio and B. Santhanam, “An improved spectro-
gram using the multiangle centered discrete fractional Fourier
transform,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, March
2005, vol. 4, pp. 505–508.

[16] D.L. Jones and T.W. Parks, “A high resolution data-adaptive
time-frequency representation,” IEEE Transactions on Acous-
tics, Speech and Signal Processing, vol. 38, no. 12, pp. 2127–
2135, December 1990.

[17] P. Flandrin, R.G. Baraniuk, and O. Michel, “Time-frequency
complexity and information,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Pro-
cessing, April 1994, vol. 3, pp. 329–332.

[18] T.-H. Sang and W.J. Williams, “Renyi information and signal-
dependent optimal kernel design,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal
Processing, May 1995, vol. 2, pp. 997–1000.

[19] L. Stankovic, “A measure of some time-frequency distributions
concentration,” Signal Processing, vol. 81, no. 3, pp. 621–631,
March 2001.

[20] S. M. Kay, Fundamentals of Statistical Signal Processing: Es-
timation Theory, vol. 1, Prentice Hall PTR, New Jersey, 1993.

[21] A. Anghel, G. Vasile, R. Cacoveanu, C. Ioana, and S. Ciochina,
“Short-range wideband FMCW radar for millimetric displace-
ment measurements,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 52, no. 9, pp. 5633–5642, September
2014.

[22] A. Anghel, G. Vasile, R. Cacoveanu, C. Ioana, and S. Ciochina,
“Short-range FMCW X-band radar platform for millimetric
displacements measurement,” in Proceedings of the IEEE In-
ternational Geoscience and Remote Sensing Symposium, July
2013, pp. 1111–1114.

[23] A. Anghel, G. Vasile, R. Cacoveanu, C. Ioana, and S. Ciochina,
“Nonlinearity correction algorithm for wideband FMCW
radars,” in Proceedings of the 21st European Signal Processing
Conference, September 2013, pp. 1–5.

[24] H. Ou, A. W.L. Whitlow, L.M. Zurk, and M.O. Lammers, “Au-
tomated extraction and classification of time-frequency con-
tours in humpback vocalizations,” The Journal of the Acousti-
cal Society of America, vol. 133, no. 1, January 2013.

[25] C. Ioana, J.I. Mars, A. Serbanescu, and S. Stankovic, “Time-
frequency-phase tracking approach : Application to underwa-
ter signals in a passive context,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Pro-
cessing, March 2010, pp. 5634–5637.

3710


