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ABSTRACT

This paper presents anO(n4) time method for filtering and
sampling of a time-varyingn × n system matrixAt in a re-
stricted class of time-varying linear systems of the formXt =
AtXt−1 + Ct + εt, via a matrix-variate normal formulation.
This allows larger systems within this class to be inferred
via Gibbs sampling in reasonable time than is possible with
methods that rely on vectorization of the system matrix, fol-
lowed by standard Kalman filtering, which run inO(n6) time.
It is shown how to apply the method to vector autoregres-
sion problems with time-varying system matrices (TVP-VAR
problems). Noisy observations of the underlying system state
are also accommodated in a straightforward way.

Index Terms— Matrix-variate normal, TVP-VAR, time-
varying, vector autoregression, linear systems

1. INTRODUCTION

This paper presents efficient algorithms for filtering and con-
ditionally sampling a time-varying system matrix in a linear
system of the form given in equations (1) to (3). This is a
restricted, but still potentially useful class of such models, for
which filtering and sampling is possible inO(n4) time, as
opposed to theO(n6) time required by the (more general) al-
gorithm used in e.g. [1] and [2], which is based on a standard
Kalman filter [3] via vectorization of the system matrix (see
section 1.2 and e.g. [2]). Such conditional sampling is neces-
sary as part of a Gibbs sampler to jointly infer hidden states,
system matrix elements and parameters in time-varying sys-
tems, and thus faster sampling, albeit in a restricted case, is of
interest when estimation of such systems is required. Time-
varying linear systems have also been used for robust Kalman
filtering [4]. The filtering portion of the method given here
is also useful for Rao-Blackwellization (see e.g. [5] for an
overview) in mixed linear/nonlinear systems with condition-
ally linear portions of the form in equations (1) to (3). In
this case, efficient filtering can be performed with a combin-
ation of particle filtering (for nonlinear portions of the state)
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and the filtering method given here (for conditionally linear,
matrix-variate normal portions).

Vector autoregression (VAR) models with time-varying
system matrices (sometimes known as time-varying para-
meter vector autoregression, or TVP-VAR) have been applied
in econometrics, particularly examining macroeconomic
factors such as monetary policy [2], the business cycle [6]
and inflation dynamics [1]. The form of these is slightly dif-
ferent to the system in equations (1) to (3), but can readily be
put into a suitable form, as shown in section 4.

1.1. Problem Formulation

The time-varying parameter linear system considered here for
ann dimensionalXt (i.e. Xt ∈ Rn) is given by

Xt = AtXt−1 + Ct + εt (t ≥ 2) (1)

At = At−1 + ηt (t ≥ 3) (2)

yt = HtXt + νt (t ≥ 1) (3)

with εt ∼ N (0, γtQ) with γt scalar,ηt ∼ MN (0, λtQ,Vt)
with λt scalar, andνt ∼ N (0, Rt). TheAt ∈ Rn×n matrix
is a time varyingn× n system matrix, perturbed at each step
with matrix-variate normal distributed noiseηt. The probab-
ility density function of the matrix-variate normal distribution
for ann × p variate matrixA is given by

MN (A; M,U, V ) = (2π)−
np
2 |V |−

n
2 |U |−

p
2 ×

exp

{

−
1
2

tr
[
V −1(A − M)′U−1(A − M)

]
}

with M ann×p matrix of element means,U ann×n matrix
of among-row covariance andV a p × p matrix of among-
column covariance. It is related to the standard vector-valued
normal distribution by

MN (A; M,U, V ) = N (vec(A); vec(M), V ⊗ U) , (4)

and is used for the estimation of linear systems and their para-
meters in [7].

In equation (2), the among-row covariance matrix ofηt is
restricted to be a scaled version of the state transition noise
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Fig. 1. Dependence structure betweenA, X andy variables

covarianceQ. This is a limitation of this method and defines
the class of problems for which the method is applicable.

The problem addressed in this paper is the joint inference
of X1:T andA2:T for all t via Gibbs sampling. As part of this,
a conditional filter is developed forp(A2:t | X1:t, θ1:t), where
θ1:t is the collection of parametersC1:t, Q, V2:t, λ2:t andγ1:t.

1.2. Gibbs Sampler forAt and Xt

In order to sample bothX1:T andA2:T from the posterior dis-
tribution p(X1:T , A1:T | y1:T , θ1:T ), a Gibbs sampler [8, 9]
can be used, samplingX1:T andA2:T in turn from the con-
ditional distributionsp(X1:T | A2:T , y1:T , θ1:T ) andp(A2:T |
X1:T , θ1:T ) (since, as shown in figure 1,A2:T are condition-
ally independent ofy1:T givenX1:T ).

Due to the linear nature of the system,bothof these con-
ditional distributions can be sampled via forward Kalman fil-
tering, followed by a backward sampling pass of the form
described in e.g. [10]. For theX1:T variables, the form is
standard and sampling takesO(n3) time. In the case of the
A2:T variables, a linear system of standard form with respect
to the elements ofAt is given by

vec(At+1) = vec(At) + η̄t

Xt = Htvec(At) + εt

with Ht = Xt ⊗ In = [X1,tIn, X2,tIn, ..., Xn,tIn] (where
In is the n × n identity matrix andXi,t is the ith element
of the Xt vector), η̄t ∼ N (0, Ut) and εt ∼ N (0, St), as
given in [2]. This is a linear system with then2 elements ofA
as its state variables, and thus takesO(n6) time to filter and
sample (assuming naive algorithms for matrix operations, so
that e.g. matrix multiplication hasO(n3) complexity forn×n
matrices; faster algorithms exist e.g. [11], although often with
prohibitive non-dominating costs or constant factors). In the
case whenUt = Vt ⊗ λtQ andSt = γtQ, this system is
equivalent to the one given in equations (1) and (2) and in
that special case it is possible to filter and sample this system
in O(n4) time, as is shown below.

The parameters composingθ1:T can also be sampled via
Gibbs sampling (see e.g. [2]), although this is not examined
in detail here.

2. FILTER FOR TIME-VARYING SYSTEM MATRIX

The matrix-variate normal filter for the system matricesA2:T

in equation (1) (whereT is the total number of steps;A1 does
not exist) can most easily be derived in two parts, apredict
andcorrectstep, similar to those for a standard Kalman filter.

Assuming that the filtering distribution ofAt−1 is given
by p(At−1 | X1:t−1) = MN (At−1; Mt−1, Q, Vt−1), then
thepredictivedistribution ofAt is given by

p(At | X1:t−1) =
∫

p(At | At−1)p(At−1 | X1:t−1)dAt−1

=
∫

Z∗MN (At−1; M∗, Q, V∗) dAt−1

= Z∗

using identity 7.1 (equation (7)) and whereV∗, M∗ and the
normalizing constantZ∗ are given there. The expression for
Z∗ can be rearranged so that it is a matrix-variate normal with
respect toAt (proportionality being sufficient, sincep(At |
X1:t−1) is a probability distribution and thus integrates to 1).
With some algebra, this gives

p(At | X1:t−1) = MN
(
At; Mt|t−1, Q, Vt|t−1

)

with

Vt|t−1 = λtVt + Vt−1|t−1

Mt|t−1 = Mt−1V
−1
t−1|t−1(V

−1
t + λV −1

t−1|t−1)
−1V −1

t Vt|t−1.

Thecorrectionstep uses this predictive distribution to ob-
tainp(At | X1:t), the filtering distribution ofAt, as

p(At | X1:t) ∝ p(Xt | At, Xt−1)p(At | X1:t−1)

= N (Xt; AtXt−1 + Ct, γtQ)MN
(
At; Mt|t−1, Q, Vt|t−1

)

= MN
(
At; Mt|t, Q, Vt|t

)

with

Vt|t = (V −1
t|t−1 + γ−1

t Xt−1X
′
t−1)

−1 (5)

Mt|t = (Mt|t−1V
−1
t|t−1 + γ−1

t (Xt − Ct)X
′
t−1)Vt|t, (6)

using identity 7.2 (equation (8)).

2.1. Prior

In order to initialize the filter forA2:T , a prior for the
distribution of A2 is required. To ensure conjugacy, this
must take the form of a matrix-variate normal distribu-
tion, so thatp(A2 | X1) = MN

(
A2; M2|1, αQ, V2|1

)
=

MN
(
A2; M2|1, Q, αV2|1

)
, whereM2|1, V2|1 andα are the

parameters of the prior (which can depend onX1). The
correction step defined above can then be used to obtain the
distributionp(A2 | X1:2) and the prediction/correction steps
defined above used to find the filtering distributions ofA3:T .
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3. BACKWARD SAMPLING

In order to perform Gibbs sampling, samples must be drawn
from p(A2:T | X1:T , θ1:T ). This requires drawing samples
of A2:T from its smoothingdistribution, conditioned on all
X1:T . This can be achieved by a running the forward filter
as given in section 2, followed by a backward sampling step
similar to the standard backward sampling for linear systems
given in [10]. The smoothing distributionp(A2:T | X1:T ) can
be decomposed as

p(A2:T | X1:T ) = p(AT | X1:T )
T−1∏

t=2

p(At | At+1, X1:t),

due to the dependence structure between theA andX vari-
ables shown in figure 1. The distributionp(AT | X1:T ) is the
final filtering distribution found using the filter in section 2.
This can be sampled using the procedure in section 3.1.

Given a sample ofAt+1, At can be sampled from the con-
ditional distributionp(At | At+1, X1:t), allowing allA2:T to
be sampled in a backward pass fromAT−1 to A2. The distri-
bution to be sampled at each step is given by

p(At | At+1, X1:t) ∝ p(At+1 | At)p(At | X1:t)

= MN (At+1; At, λtQ,Vt)MN (At; Mt, Q, Vt)

∝ MN
(
At; Mt|T , Q, Vt|T

)

with, by identity 7.1,

Vt|T =
(
λt

−1V −1
t + V −1

t|t

)−1

Mt|T =
(
Mt|tV

−1
t + λt

−1A∗
t+1V

−1
t

)
Vt|T

whereA∗
t+1 is the sampled value ofAt+1.

3.1. Sampling Matrix-Variate Normal Distributions

Matrix-variate normal distributions can be sampled by mak-
ing use of the identity in equation (4), which reduces their
sampling to the standard problem of sampling from the
vector-valued normal distribution. This can be achieved
by calculating the Cholesky decomposition of the covariance
matrix and pre-multiplying a vector of independent standard
Gaussian variables (i.e. distributedN (0, 1)) by this.

In order to draw samples of ann × p matrix-variate nor-
mal distribution inO(n2p2) time, however, the Cholesky fac-
torization of thenp × np covariance matrixV ⊗ Q should
be calculated by first calculating the Cholesky decomposition
and taking the Kronecker product of these, using the fact that

chol(V ⊗ Q) = chol(V ) ⊗ chol(Q).

This is readily seen by lettingLQ = chol(Q) and similarly
LV , so thatV ⊗Q = (LV L′

V )⊗(LQL′
Q) = (LV ⊗LQ)(LV ⊗

LQ)′. Calculation of the individual Cholesky decomposi-
tions takesO(n3) andO(p3) time for Q andV , respectively,
and calculation of the Kronecker product takesO(n2p2) time,
which can dominates asp andn increase.

4. TIME VARYING PARAMETER VECTOR
AUTOREGRESSION (TVP-VAR)

An important application for the estimation of time-varying
system matrices is in the inference of time-varying parameter
vector autoregression systems [2], of the form

Xt = Ct + B1,tXt−1 + B2,tXt−2 + ... + Bk,tXt−k + εt,

with k being the maximum lag in the autoregression and, as
before,εt ∼ N (0, Q). The time-varyingB1:k,t matrices can
be estimated by writing the system as

Xt = Ct + BtX̄t−1 + εt,

whereX̄t−1 = [X ′
t−1, ..., Xt−k]′ andBt = [B1,t, ..., Bk,t].

If the dynamics ofB are assumed to be of the form

Bt = Bt−1 + ηt

with ηt ∼ MN (0, Q, V ), then, given a filtering distribution
of Bt−1 of the formp(Bt−1 | X1:t−1) ∼ MN

(
Mt−1, Q, Vt−1|t−1

)
,

the predictive distribution ofBt can be found using the pre-
diction step given in section 2, which applies directly as
shown. The correction step is also identical aside from the
replacement ofXt−1 with X̄t−1 in equations (5) and (6).

To model the elements ofB at each lag as evolving inde-
pendently, i.e.

Bi,t = Bi,t−1 + ηi,t

with ηi,t independent ofηj,t for j 6= i, the Vt matrix
should be chosen to be block diagonal withk blocks on
the main diagonalV1,t, ..., Vk,t, each of which is ann × n
covariance matrix. In this caseηi,t ∼ MN (0, Q, Vi) =
MN

(
0, λi,tQ,λ−1

i,t Vi

)
.

5. RESULTS

To demonstrate the operation of the matrix-variate normal fil-
ter and backward sampler, its output can be compared to that
of the standard Kalman filter approach as given in section 1.2.
Figure 2 shows a comparison of the±2 standard deviation
range of 2000 samples drawn using the two methods. There
are slight discrepancies between these due to the randomly
drawn samples, but the results are consistent with the fact that
the two methods sample the same distribution. This compar-
ison usedQ = 0.1In, γt = 1, Vt = 0.01In andλt = 10 for
all t as both filter parameters and for data generation (during
data generation, theAt matrix was only allowed to take stable
values by ensuring the magnitude of all eigenvalues was less
than 1). It can be seen that the true value ofAt almost always
falls within the 2 standard deviation range.

In order to compare the running times of the two meth-
ods with increasing system dimensionn, both methods were
timed running on (stable) systems of increasing dimension.

3703



Fig. 2. Comparison of±2 standard deviation range of 2000
samples ofA2:300 drawn using the Kalman filter method (grey
shading) and matrix-variate normal method (black lines) for
each element of a3 × 3 A matrix. Blue lines show true value
of element ofAt at each time

Timing results are shown in figure 3, averaging over 10
samples at each dimension. It can be seen that the matrix-
variate normal method runs faster than the Kalman filter
method for alln > 3 and, as expected, its runtime appears
to scale withn4 for n > 30. Due to its slow running time
the Kalman filter method was only tested up ton = 25 at
this dimension it exhibits slightly lower thann6 scaling of its
runtime, probably due to optimizations possible below this
scale such as exploiting vector processing capabilities on the
CPU (an Intel i7-3770); a similar effect is observed in the
matrix-variate normal case atn < 30.

Matlab code for the results in this section, including
matrix-variate normal filter and backward sampling algorithms
can be found atwww-sigproc.eng.cam.ac.uk/Main/JM362.

6. CONCLUSION

This paper has presented anO(n4) time method for filtering
and sampling for a time-varying system matrix in a restricted
class of time-varying linear systems. This allows larger sys-
tems within this class to be inferred in reasonable time than is
possible with a standardO(n6) Kalman filter-based method.

The derivation of the filter is similar to that of the standard
Kalman filter (in a Bayesian formulation) and thus the meth-
ods given here can be extended further in several ways not
shown. It is straightforward to deal with systems in which the
dynamics ofA take the formAt+1 = FtAt+ηt. A simple ex-
pression for the state likelihoodp(X1:T | θ) can be obtained
in a way analogous to the prediction error decomposition of
the Kalman filter (e.g. [12]). It is also possible to derive a
smoother analogous to the RTS smoother [13], to give ex-
pressions for the smoothingdistributionsp(At | X1:T , θ).

Fig. 3. Running times against system dimension for a single
forward filter and backward sampling step using a standard
Kalman filter approach and the matrix-variate normal ap-
proach proposed here. Faint dashed lines are proportional to
n4 (long dashes) andn6 (short dashes)

7. APPENDIX: MATRIX-VARIATE NORMAL
IDENTITIES

7.1. Product of Two Matrix-Variate Normal PDFs

ForX ann × p matrix,

MN (X; M1, Q, V1)MN (X; M2, λQ, V2)

= Z∗MN (X; M∗, Q, V∗) (7)

with

V∗ =
(
V −1

1 + λ−1V −1
2

)−1

M∗ =
(
M1V

−1
1 + λ−1M2V

−1
2

)
V∗

Z∗ = (2π)np/2

(
|V1||V2|
|V∗|

)n/2

|Q|p/2 exp

{

−
1
2

tr(T )

}

T = V −1
1 M ′

1Q
−1M1 + λ−1V −1

2 M ′
2Q

−1M2

−V −1
∗ M ′

∗Q
−1M∗

7.2. Product of Normal and Matrix-Variate Normal PDFs

For X an n × 1 vector,Y a p × 1 vector andA andn × p
matrix

N (X; AY, γQ)MN (A; M,Q, V ) ∝ MN (A; M∗, Q, V∗) (8)

with

V∗ =
(
V −1 + γ−1Y Y ′

)−1

M∗ =
(
MV −1 + γ−1XY ′

)
V∗

This relies on the fact thatxAy = tr(Ayx′) for appropriately
sized vectorsx andy and matrixA.
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