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ABSTRACT this end, several extensions of EMD have been proposed,

Multich | data-dri time-f lqorith namely complex EMD (CEMD) [9], rotation-invariant EMD
uitichannel - data-driven tme-irequéncy - algortnms, (o, enpy 110], bivariate EMD (BEMD) [11], trivariate EMD
such as the multivariate empirical mode decompositio

. . .112] and multivariate EMD (MEMD) [13, 14]. Application
(MEMD), have emerged as important tools in the analysi 12 wtivarl ( ) [ 1. Applications

finter-ch ld dencies that arise i ltivariate.d f MEMD include feature estimation [15] and artifact re-
of inter-channel dependencies that arise in multivariated | [16, 17].

Such methods employ uniform projection schemes on hyper- It should be noted that as EMD-based algorithms perform

theresé)lrs or(iler t(talllest(ljmate tf|1.e Iocahl mean, thu§ reqwgn gnal decomposition based on the identification of a set of
ense but underutilised sampling when processing un a'daptive basis functions of a signal, a mathematical descri

anced data channels. To this end, we propose a nonunlfor{i’r&n of these techniques is still lacking. To this end, thekvo

p!’OJe.CtIOH SCh_em.e that gdapts to th? segond order staustic in [18] proposed an alternative approach to EMD called the
trivariate data; this provides the estimation of the locabm synchrosqueezing transform (SST). This method reallscate
in the case of power imbalances and correlations betwee[ﬁ/

the ch ls. The alaorithm i dcularl ful f e energies of resulting wavelet coefficients generated by
€ channeils. The algonthm IS particuiarly Usetul Tor gene v, o ontinyous wavelet transform (CWT) by combining the
ating a low number of direction vectors within MEMD. lts

¢ is illustrated theti d real ldlat coefficients containing the same instantaneous frequescy,
performance Is iilustrated on synthetic and real-wori@da sulting in a highly localised time-frequency represeoiabf

Index Terms— Trivariate EMD, non-uniform sampling, a univariate signal. More recently a multivariate extensib
Hilbert transform, multiscale processing. the SST [19] has been proposed to identify a set of modulated
oscillatory components common to the multivariate data. Ap
plications include multivariate time-frequency analyKi9]
and multivariate signal denoising [20], whereby inter+uhel

S . . . dependencies are employed for enhanced signal analysis.
Empirical mode decomposition (EMD) is a signal decompo The sifting algorithm employed in both the BEMD and

sition algorithm that was developed for the analysis of nons = vip roiects the multichannel inout sianal alona mul
linear and non-stationary data [1]. The algorithm adaptive . proj e P g 9

. o . . . iple uniformly-sampled direction vectors in multidimen-
identifies a set of basis functions from the signal, termed: .

R ) . I sional space so as to estimate the local mean. However, as
intrinsic mode functions (IMFs), using a sifting process.

The IMEs are narrow-band amplitude/frequency-modulate(rjeal'world signals often contain power imbalances or inter

(AM/FM) components and, via the Hilbert transform admit.ChanneI correlations, these vectors may not best represent

a highly localised time-frequency representation [2, 3jnm= Inter chann_el deper_lden_mes of multichannel data, r_m@ulu
. U - the sub-optimal estimation of the local mean. To this engl, th
pared to conventional projection-based time-frequendpnme . . -
: . - work in [21] introduced the nonuniformly sampled BEMD
ods such as the short-time Fourier transform, the dataewlriv

nature of the EMD has enabled more physically meaningfqus.'BEMD)’ which explqlts the second-ordergtatlstlcs lof b
L - ) T " variate signals, namely inter-channel correlations andgoo
analysis in applications ranging from bio-signal procegsi

[4, 5] and oceanography [6] to palaeoclimatology [7] discrepancies between data channels, yielding a globaf set
' An implication of the empirical nature of standara EMD projections which map the signal to the direction of highest
. . L ; . . curvature. The work in [22] introduced dynamically-santple
is that its application to multichannel data typically résin . L7
. g . ) BEMD (DS-BEMD), an adaptive projection scheme based
IMFs with differing oscillatory dynamics across data chan-

nels for a given IMF index. Furthermore, similar oscillator on the local signal dynamics. The DS-BEMD quantifies local

. . .signal dynamics via Menger curvature, so as to generate pro-
modes may appear across multiple IMFs, obscuring multiz 9 y Y 9 P

channel data analysis based on the univariate EMD [8]. Tipetion vectors acgordlng to t.he (.j'reCt'ons n Z'd'm?nalon
Space where the signal exhibits highest local dynamics.
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the multivariate case (greater than 2 channels) were/are opof highest curvature within trivariate/multivariate sajs, re-
problems for which a potential solution has been proposedulting in a suboptimal estimate of the local mean. In order t
for the NS-BEMD algorithm. This work extends the bivariate overcome this problem, a combination of uniform sampling
case to introduce a nonuniformly sampled trivariate EMDof the sphere along with a nonuniform sampling scheme is
(NS-TEMD). This is achieved based on global nonuniformproposed. By employing uniform samples, the directions of
sampling first introduced in [21], so as to identify directio highest curvature not captured by the nonuniform samples
vectors that adapt to the second order statistics of tetari are also used for projecting the input signal, yielding aenor
data. accurate estimate of the local mean.

In order to develop a ‘global’ nonuniform sampling
scheme for the trivariate and ultimately multivariate EMD,
the directions of principal importance need to be deterohine
As with the NS-BEMD, the directions of principal impor-
tance are defined in terms of inter-channel power imbalances
and correlations. For a given multivariate signdl), with a
covariance matrix given b@ = E{xT (t)x(t)} (whereE{-}
is the statistical expectation operator dnd is the transpose
operator), the directions of principal importance can then
determined by carrying out an eigendecomposition of the co-
variance matrixC = VAV, where the entries of a diagonal
@) matrix A correspond to the eigenvalues and the matroor-

responds to the eigenvectors of the covariance m@trixhe
eigenvector matrixV, captures the directions of principal

1 e 1 ek Ky importance of a given trivariate signal, while the eigeneal
® e ¥ « ® £ BSE determine the relative power of the resulting directions.
= = & T B
§ 0 . :f} S 0] R In order to generate nonuniform samples based on the
N L PR S N S statistical structure of the input trivariate signal, alipsbid

PIRSE. 4 1 g, T with the following Cartesian coordinates ¢ y — z axis) is

1 *Xe % s 1 kK -

- T T generated
0~ 0 _ ;
y-axis 0y axis y-axis 0, axis T = a cos sing
y = b sinf cosp (1)
b
®) 2z = cCOSp

Fig. 1. TEMD sampling for unbalanced data. (a) The scatwheref is the inclination anglep corresponds to the azimuth
ter plot of a three-channel data source, exhibiting a signifiangle, and the terms, b, ¢ are parameters used to determine
cant power imbalance. (b) The proposed sampling schemg@e ellipsoid in three dimensional space. The inclinatiod a
(left panel) for the three-channel data source shown in (aazimuth angles correspond to the directions of a uniformly
The corresponding uniform sampling scheme employed fosgampled sphere (Hammerseley sequence [13]), such that the
the TEMD (right panel). resulting ellipsoidally distributed samples are locatézhg

the directions of highest curvature.

2. NONUNIFORMLY SAMPLED TRIVARIATE EMD

Algorithm 1: Nonuniformly sampled Trivariate EMD (NS-
The NS-BEMD algorithm in [21] enhanced the performancel EMD)
of the conventional BEMD for bivariate data with non-
circular statistics. This was achieved by relating the sdco 1. Given a trivariate signad(t), perform the eigendecom-

order statistical structure of the bivariate data, capturg position of the covariancey{xx’} = V AVT where
the circularity quotient, to the parameters of an ellipsgshs V is the eigenvector matrix, and

that the resulting samples were localised along the doesti A = diag{\i, \2, A3}, is the eigenvalue matrix, with
of principal importance. A detailed explanation of the NS- the eigenvaluesy; > Ay > As.

BEMD can be found in [21].

In the case of trivariate signals, identifying the direnso 2. Uniformly sample a sphere using the Hammerseley se-
of highest curvature in three dimensional space is a non- quence, and determine the corresponding azimuth an-
trivial task. This is particularly the case when attemptiog gle ¢y, and inclination angléy of the Hammersely
identify a set of global nonuniformly sampled projections, projections, in order to identify the Cartesian coordi-

as the nonuniform samples may not align with the directions nates of the uniformly sampled sphere.
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3. Determine the nonuniform projectiép on a sphere by third channel were fixed at 30 dB; the corresponding recon-
constructing an ellipsoid with the following parametersstruction SNR of the sinusoid in the first channel was then
calculated for a given IMF index.

)\1% coshy Sindsr Fig. 2 shows the reconstruction SNR for the proposed al-

U 5 gorithm against the MEMD and the MWSD, when processing

1= | A3 sindp Cospy @ sinusoidal oscillations with frequencies of 5 Hz and 10 Hz.
,\§ cospy It can be observed that the proposed method outperforms the

MEMD in recovering the 10 Hz sinusoid with approximatly
Rotate the ellipsoicg, such that the directions of high- 3dB of improvementwhen there exists a power imbalance be-
est curvature are samplegl, = Ve,. tween channel 1 with respect to the second and third channels
of approximately 18-27 dB (the SNR of the first channel was
4. Perform the local mean estimation according to the3-12 dB). For the 5 Hz sinusoidal oscillation the reconstruc
conventional MEMD algorithm (see [13] for more de- tion SNR of NS-TEMD was approximatly 3dB higher than
tails), using both the uniform samples and the nonunithat of MEMD, when there exists a significant power imbal-
form samples,. ance between the relevant channels. The proposed algorithm
however, performs similar to MWSD in recovering the 5 Hz
and 10 Hz sinusoidal signals when the power imbalance was
relatively low (lower than 4 dB).

3. SIMULATION RESULTS

The performance of the NS-TEMD algorithm was evaluated.2. Noise Assisted Signal Decomposition

over simulations on trivariate signals with varying channe . . )
powers, and on noise assisted signal decomposition on syHl this section the performance of the proposed nonunifprmi

thetic data and an event-related potential (ERP) signah fro sampled TEMD algorithm was assessed against the MEMD
the electroencephalography (EEG). All the simulations em(Using only three channels) for a noise-assisted decomposi
ployed 32 projection vectors, as 16 projection vectors ardion of a two tone sinusoidal oscillation. For this simubati

inadequate to capture the direction of highest curvature J’Pe.ﬂrSt channel cqnsisted of a discrete time signal (saple
trivariate signals, and employing a larger number of projec@tfs = 1000 Hz), given by

tion vectors is computationally intensive. 10 15
1 o

T = cos2m—n + cos 2m—n, 3)
[s [s

3.1. Bivariate Data with Varying Channel Powers
and the second and third channels were WGN processes. The

We next examined the performance of the proposed NSwp|ative power of the second and third channel was constant,

TEMD algorithm in denoising a three channel signal consistyyjle the SNR of the first channel relative to noise channels
ing of sinusoidal oscillations, and against those of MEMID an

multivariate wavelet synchrosqueezing denoising (MWSD)
algorithm [20]. The SNR of the first channel was varied
between 17 dB and -1 dB, while the SNR of the second an
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@ L, 0he tone signal in (3) with varying channel power ratio, given
- SNk (dB) 12 13 14 15 16 17 by 101og(£2), with Q = %& (upper panel) Re-

) ) ) ~ construction of both the NA-NSTEMD and NA-MEMD al-
Fig. 2. Reconstruction error (in SNR) for the IMFs of a si- gorithm for the 15 Hz tone. (lower panel) Reconstruction of

nusoid (upper panel: 5Hz, lower panel: 10Hz) using the propoth the NA-NSTEMD and NA-MEMD algorithm for the 10
posed NS-TEMD, MEMD and MWSD algorithms. Hz tone.
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Fig. 4. ERP ground truth generated by performing MEMD Fig. 5. Mean squared error of ERP components at the Fz
and NS-TEMD on EEG data recorded from the Fz electrodelectrode (upper panel) and Cz electrode (lower panel).
(upper panel) and Cz electrode (lower panel) during an ERP

experiment.

nals from both the Fz and Cz electrodes, and the MSE for the

NA-MEMD approach was particularly high during the P300
was varied from 0 dB to 20 dB. Fig. 3 shows the reconstructethich, in BCI applications, is the most important component
SNRs for both the proposed noise-assisted NS-TEMD (NAOf the ERP.
NSTEMD) and noise assisted MEMD (NA-MEMD, see [23]  Observe from Table 1 that the NA-NSTEMD outper-
for more details) algorithms; the reconstruction SNR fa th formed the NA-MEMD. The case when the NA-NSTEMD
proposed method improved as the relative SNR increase#/as used to decompose a single channel of an ERP signal
while for the NA-MEMD the performance decreased with thefrom either the Fz of Cz electrode with the other two channels

degree of a power imbalance between the data channels. being WGN did not outperform the NA-MEMD (the result
is not shown). This is because there was no inter-channel

dependency or imbalance which is essential in generating

3.3. ERP component decomposition nonuniformly sampled projection vectors in NS-TEMD.

Event-related potentials are elicited sensory resporfséneo
brain, generated primarily from auditory and/or visualsti Table 1. The average MSE along time of the NA-NSTEMD
uli and measured via EEG [24]. Major ERP componentsind NA-MEMD algorithms from the Fz and Cz electrodes.

include the P1, N1, P2, N2 and P300. The P300 can be

Fz Cz
elicited through unexpected stimuli. The subject was shown NA-NSTEMD 535 < 10-% 167 x10-13
randomly coloured boxes (non-target stimuli) and a box with NA-MEMD 1.00 x 10-12 9.3 x 10-13

white background and red foreground (target stimulus)h bot

types of stimuli were generated using an LCD screen. The
time intervals between each of the desired stimuli were ran-
domised. The ERP signals were band-pass filtered to 1-20 Hz

and averaged over 10 trials. A multichannel signal was then

constructed from ERP data recorded from the Fz and Cz ele€ NS-TEMD algorithm has been introduced in order to gen-
trodes forming the first and second channels, while the thir§at€ projection vectors that represent the principacdoe
channel for both algorithms contained white Gaussian noisl® thrée dimensional space for unbalanced trivariate sig-

to enforce a dyadic filterbank structure within the EEG chanl@/S. The proposed algorithm has been shown to outperform

nels and enable noise-assisted mode-of-operation in lboth £onventional MEMD in decomposing trivariate noisy sig-
gorithms. Fig. 4 shows the ground truth of the ERP data ger?2!S with modest SNRs and outperformed the MWSD when
erated by averaging 1000 ERP-IMFs obtained from applyin NRs were low. Ir_] the presence of white Gaussian noise,
1000 realisations of the NA-NSTEMD and NA-MEMD on the proposed algorithm has been shown to be more effective
the multichannel signal. In order to evaluate the perforrean than NA-MEMD. Simulations on both synthetic and EEG
of both the NA-MEMD and NA-NSTEMD algorithms, the data SUppOI’F the anaIyS|s;. NA-NSTEMD yielded significantly
mean squared error (MSE) for each realisation of the estioWer MSE in decomposing ERP components compared to
mated ERPs was calculated with respect to the ground truffA-MEMD, showing its potential to recover responses in
ERPs for each electrode. real-world data.

Observe from Fig. 5 that the NA-NSTEMD vyielded sig-
nificantly lower MSE compared to NA-MEMD for ERP sig-

4. CONCLUSION
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