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ABSTRACT
In this paper, we propose a method to estimate the space-time
covariance matrix of rapidly varying sea clutter. The method first
develops a dynamic state space representation for the covariance
matrix and then approximates the covariance using the nearest
Kronecker product to reduce computational complexity. Particle
filtering is then applied to estimate the dynamic elements of the
covariance matrix. We validate the nearest Kronecker product ap-
proximation using real sea clutter radar measurements. We further
demonstrate the use of the estimated space-time covariance matrix
in the track-before-detect filter to track a low observable target in
sea clutter.

I. INTRODUCTION
Tracking low observable targets in maritime applications is a

difficult problem due to severe degradation caused by sea wave
reflections. Low signal-to-clutter ratio (SCR) conditions result as
the radar cross section of sea swells is substantial and fast moving
waves cause large Doppler shifts. Various target detection methods
have been investigated to increase SCR based on modeling the
statistical properties of real sea clutter. In particular, it was shown
that sea clutter amplitude follows a non-Gaussian distribution [1]–
[4]. The compound Gaussian (CG) model [5] is well-established
for characterizing sea clutter; it models small scale structures
on the sea surface with short decorrelation time as complex
Gaussian distributed speckle. The speckle is modulated by slow-
varying texture, a component associated with long sea waves and
swell structure, that decorrelates much slower than speckle. Using
the CG model, many adaptive detection approaches have been
proposed that estimate the covariance matrix of sea clutter using
sample covariance, assuming independence between neighboring
range bins [6]–[8]. However, as sea clutter has been shown to be
highly correlated between neighboring range bins [5], space-time
correlation properties of sea clutter need to be considered.

The estimation of the space-time covariance matrix (ST-CM) of
dynamic sea clutter using multiple particle filtering (PF) [9] was
proposed and validated in [10]. This approach is not practically
feasible as it estimates all ST-CM elements; the number of elements
exponentially increases as the number of range bins and/or number
of pulses used for coherence processing increases. In addition, the
ST-CM positive definiteness is not guaranteed due to independent
multiple PF, and it assumes knowledge of a noisy covariance
matrix, estimated by averaging a large number of measurements.

In this paper, we propose estimating the sea clutter ST-CM using
the nearest Kronecker product approximation (NKPA) with PF.
Using the NKPA drastically reduces the number of elements to be
estimated and does not require a large number of measurements.
The likelihood function in the PF updates the particle weights using

a significantly lower number of fast time measurements. Finally, the
proposed method is guaranteed to yield a positive definite estimate
for the covariance matrix. The sea clutter covariance estimation is
applied to a target tracking problem under low SCR.

This paper is organized as follows. In Section II, we propose
an NKPA based state space covariance estimation approach and
demonstrate its PF implementation in Section III. In Section IV,
we demonstrate the estimation in a low SCR tracking application.
Simulations to demonstrate the validity of the sea clutter covariance
estimation approach are provided in Section V.

II. SEA CLUTTER MODEL

A. Measurement Model

We consider a pulse Doppler radar operating at FPRF Hz pulse
repetition frequency (PRF) and transmitting Np pulses per dwell
in rapidly varying sea clutter. The same transmit signal is used
within each dwell, given by a linear frequency-modulated (LFM)
chirp s[n], n= 0, . . . , Ns − 1, with bandwidth Bs Hz and pulse
width Ns samples. At the receiver, we assume that the region of
measurement selection for track updates or validation gate at the
kth dwell consists of Mk range bins, mk is the first range bin. The
noisy observation signal y(n/fs, p) from the pth pulse at the kth
dwell is sampled at fs Hz to obtain

yk[n, p] =

n∑
m=n−Ns+1

ak[m, p]s[n−m] + uk[n, p] , (1)

where n=mk, . . . ,mk+Mk+Ns−1, p= 0, . . . , Np−1, uk[n, p]
is assumed to be zero-mean, white Gaussian observation noise at
the kth dwell, ak[n, p]= ξk[n, p] exp(j2πνk p/FPRF), and ξk[n, p]
is the complex reflectivity of the aggregated scatterers associated
with the nth range bin with Doppler shift νk. At the kth dwell,
considering all Np pulses and Mk+2Ns−1 range bins, the overall
scatterer contribution is represented by the ((Mk+2Ns−1)×Np)
reflection matrix Ak whose (n, p)th element is ak[n, p].

If a target is present, the signal in (1) includes both the target
and clutter. If βk is the target reflectivity at range bin mt, which
is assumed unknown [11], with Doppler shift ν, and we denote
βk,n =βk exp(j2πνp/FPRF) then the received measurement is

yk[n, p] = βk,ns[n−mt] +

n∑
m=n−Ns+1

ak[m, p]s[n−m] + uk[n, p].

Note that the range rk and range rate ṙk of the target at the kth
dwell are given by rk =mtvc/(2fs) and ṙk = ν vc/(2fc), where vc
is the velocity of propagation and fc Hz is the carrier frequency.
After matched filtering, the resulting measurement is given by

zk[n, p] =

n+Ns−1∑
m=n

yk[n, p] s
∗
p[n−m] (2)
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for n=mk, . . . ,mk + Mk − 1, p= 0, . . . , Np − 1. Here, we
use yk[n, p] as defined in (1) and assume that only clutter is
present. The overall clutter measurements at the kth dwell can be
represented by the (Mk ×Np) matrix Zk.

B. Measurement State Space Model
As sea clutter is dynamically varying, its state transitions between

adjacent range bins depending on the sea waves relative velocity
with respect to the radar. In [10], the spectral component of the
reflectivity matrix was dynamically modeled to show its transition
between adjacent bins using the Doppler shifts. Using a similar
approach, we model the matched filter output using the (Mk×Np)
matrix Bk =ZkD, where D is an (Np × Np) discrete Fourier
transform matrix. The elements of D are such that the first
(Np−1)/2 columns list the negative Doppler shifts, the middle
column is the zero Doppler shift, and the remaining columns list
the positive Doppler shifts. In this model, most of the sea clutter
components can be shown to concentrate around the middle column
under calm sea state conditions but move away from the middle
under turbulent conditions.

We represent the clutter state transition in vector form by stack-
ing the columns of Bk from left to right to form the (Mk Np × 1)
vector bk = vec(Bk). We similarly represent the matched filter
output at the kth dwell as the vector zk = vec(Zk). The relation
between these two vectors can be shown to be bk = (DH⊗IMk ) zk,
where H denotes Hermitian transpose and IMk is the (Mk ×Mk)
identity matrix. The Kronecker product (KP) operator ⊗ computes
the KP on the (Np ×Np) matrix DH and the (Mk ×Mk) matrix
IMk to form an (Mk Np ×Mk Np) block matrix. The clutter state
transition can be modeled using the state equation

bk+1 = Fbk + vk+1 , (3)
where vk+1 is the modeling random error process assumed zero-
mean complex Gaussian with covariance Vk+1. The (Mk Np ×
Mk Np) state transition matrix F (defined in Equation (9) in [10])
represents the scattering movement between dwells and populates
the range-Doppler bins moving into the validation gate. It represents
the transition of a fast moving clutter between from range bins n
and n + m if the reflector is moving away from the radar and
between range bins n and n−m if the reflector is moving towards
the radar; the value of m is determined by the Doppler shift.

C. Clutter Covariance Matrix State Space Model
In order to estimate the covariance matrix Σzk of zk in Equation

(2), we use the relationship between zk and bk to relate their
corresponding covariance matrices Σzk and Σbk . From (3), the
covariance matrix of bk+1 can be written as

Σbk+1 = FH Σbk F+Gk+1 (4)
where Gk+1 is assumed Wishart distributed with parameters Vk+1

and Mk Np degrees of freedom. Since bk = (DH ⊗ IMk) zk,
Σbk = (DH ⊗ IMk)Σzk (D⊗ IMk) . (5)

The covariance Σzk estimate can be obtained by inverting (5).
Replacing (5) in (4), we obtain

Σbk+1 = FH (DH ⊗ IMk )Σzk (D⊗ IMk)F+Gk+1 . (6)
This covariance state space model is similar to the one in [10].
Thus, as the size of the covariance matrix grows exponentially with
Np and Mk, the estimation of the covariance in (6) becomes very
computationally intensive.

D. Covariance Nearest Kronecker Product Approximation
Considering the formulation of the (Mk × Np) measurement

matrix Zk in Section A, we can view the rows and columns of the
matrix as an (Mk ×1) temporal vector qk and an (Np×1) spatial
vector, ck, respectively. In particular, assuming that the temporal
and spatial vectors have the same distribution for all range bins and
pulses, respectively, then we can model the measurement matrix as
the KP on the two random vectors. Specifically,

Zk = qH
k ⊗ ck . (7)

This assumption is consistent with the popular compound-Gaussian
sea clutter model in which the slow varying texture component can
be viewed as a spatial process and the fast varying speckle com-
ponent can be viewed as a temporal process. Using KP properties
[12], the covariance of Zk can be written as

Σzk = Σqk ⊗Σck . (8)
The state space model in (6) can then be given by

Σbk+1 = FH (DH ΣqkD⊗Σck)F+Gk+1 . (9)

In order to maintain the KP form in (8) at the (k + 1)th dwell
transition, we impose the following covariance constraint
Σzk+1 = arg min

Σqk+1
,Σck+1

∥ Σ̂zk+1 −Σqk+1 ⊗Σck+1 ∥F (10)

where ∥ · ∥F is the Frobenius matrix norm. The covariance matrix
Σ̂zk+1 is a function of Σqk and Σck at the kth dwell, and it is
obtained by substituting (9) in (5). The minimization problem in
(10) corresponds to a nearest KP approximation (NKPA) problem
[13]; the solution is the cross product of the singular vector
corresponding to the maximum singular value of the permuted
version of Σ̂zk+1 . Solving the minimization in (10) using the
NKPA results in a drastic reduction in computational complexity
when estimating the measurement covariance matrix. Specifically,
the NKPA reduces the number of matrix elements to be estimated
from (NpMk(NpMk +1)/2) to [Np(Np +1)+Mk(Mk +1)]/2.
For example, if Np = 10 pulses and Mk = 10 range bins, the element
estimation reduction is from 5050 to 110 elements.

III. PARTICLE FILTER IMPLEMENTATION

As the state model in (9) is not linear, we use PF to estimate
the covariance matrix elements [14]. The PF represents the spatial
and the temporal covariance matrices by a set of particles and cor-
responding weights. Given the initial particle states, the predicted
matrices at dwell k + 1 are obtained using the state model. The
predicted particles are updated using the clutter measurement like-
lihood function. Specifically, if we denote the particle covariance
matrices as {[Σ(i)

qk , Σ
(i)
ck ], w

(i)}, where w(i) is the weight for the
ith particle, then assuming that the clutter measurement is complex
Gaussian, the log likelihood function is

l
(
zk| Σ(i)

qk
,Σ(i)

ck

)
= −Np log(|Σ(i)

ck |)−Mk log(|Σ(i)
qk

|)

−tr
{
Σ̂k

[
(Σ(i)

qk
)−1 ⊗ (Σ(i)

ck )
−1

]}
where |Σ|, Σ−1, and tr(Σ) are the determinant, inverse and trace
of Σ, respectively, and the sample covariance matrix is obtained as

Σ̂k =
1

NT

k∑
ℓ=k−NT−1

zℓz
H
ℓ .

Here, we assume that the clutter statistics do not drastically change
while the NT (past and present) dwell measurements are obtained.
Since the clutter can be fast varying, the number of samples
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used for the sample covariance estimate is usually much smaller
than the vector dimension, i.e., NT ≪ Np Mk. If we do not
use the NKPA on the covariance matrix, the maximum likelihood
estimate (MLE) is the sample covariance matrix, which will only
be positive definite if NT ≥ Np Mk. However, by assuming
the NKPA, the MLE in KP form is positive definite as long as
NT ≥ [max{(Mk/Np), (Np/Mk)}+ 1] [15], [16]. Moreover, the
likelihood computation is further simplified since we compute the
inverse and determinant of two matrices of low dimension instead
of one matrix of higher dimension.

Assuming that the initial covariance matrices Σqk , Σck and the
modeling error matrix Gk+1 are positive definite, then Σqk+1 in
(9) is also positive definite. Using (5), Σ̂zk+1 in (10) is also positive
definite. For a symmetric positive definite matrix, the solution to
the NKPA also results in symmetric positive definite matrices [13].
Therefore, Σqk+1 and Σck+1 in (10) are positive definite. Since all
the particles correspond to positive definite matrices, the updated
particles are also positive definite. This ensures that the proposed
covariance matrix estimate is always positive definite.

IV. TRACK-BEFORE-DETECT IN SEA CLUTTER
In this section, we use the proposed NKPA-based covariance

matrix estimation to track a low observable target in the presence
of sea clutter. We consider a target moving in a two-dimensional (2-
D) plane with state vector xk = [xk ẋk yk ẏk]

T, where (xk, yk) and
(ẋk, ẏk) are the 2-D Cartesian coordinates of the target position and
velocity, respectively, at the kth dwell. The target state is modeled
as xk =H(xk−1)+wk, where H is a state transition function and
wk is the modeling error.

The single target recursive track-before-detect (TBD) algorithm
in [17] is modified for use with our measurement model. Using
this algorithm, a target leaving the field-of-view (FOV) and a target
already in the FOV are represented by two sets of particles. The
posterior probability density of the target is obtained as a weighted
combination of the particles from both sets. The algorithm can also
provide an analytical expression for estimating the target existence
probability. The measurement component associated with the target
is present in the neighborhood of the range bin under test (in
which the target is present). This component is governed by the
correlation properties of the transmitted signal [18]. Thus, detection
and tracking must be performed using all the neighborhood range
bins, including the range bin under test. Specifically, for a target
present at range bin mt, the measurement data is extracted from the
measurement matrix Zk (that contains both the target and clutter)
as zk,mt = vec(Zk[mt − Nh : mt + Nh, 0 : Np − 1]), where Nh

is the number of neighborhood bins. The covariance matrix Σk,mt

that corresponds to this vector is a principal sub-matrix of the full
covariance matrix estimated in Section D. This sub-matrix is also
positive definite since any principal sub-matrix of a positive definite
matrix is also positive definite [19].

In an actual tracking application, estimating the clutter co-
variance matrix is a challenging problem as the measurements
include the target component. In practice, the clutter is assumed
homogeneous so that the clutter covariance can be estimated using
range bins in the neighborhood of the range bin under test. If the
clutter is heterogeneous, then this assumption can lead to poor
detection performance. Here, we exploit the state space clutter
model to predict the clutter covariance matrix Σk,mt from the
previous clutter covariance matrix estimate Σzk−k0

. Specifically,
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Fig. 1. (a) Singular value of permuted covariance matrix using real
sea clutter. (b) NKPA error for data sets D1-D5.

we assume that the probability that the target is still present in
range bin mt at the (k − k0)th dwell is very low. Thus, the sub-
matrix Σk,mt can be extracted from the predicted covariance matrix
obtained as,
Σzk−k0+1

= (D−H ⊗ IMk)F
H(DHΣqk−k0

D⊗Σck−k0
)F(D−1 ⊗ IMk)

Σzk−k0+1 = NKPA[Σzk−k0+1 ]

...

Σzk = (D−H ⊗ IMk)F
H(DHΣqk−1D⊗Σck−1)F(D

−1 ⊗ IMk)

Σzk = NKPA[Σzk ]

where NKPA[A] is the NKPA of a matrix A. The likelihood
function for a signal embedded in complex Gaussian clutter can
then be derived as
l(zk|xk) = exp (Re{rH

k,mt
Σ−1

k,mt
zk,mt}

2/rH
k,mt

Σ−1
k,mt

rk,mt) .

If we define the cross-correlation of the transmitted signal as

rs[n] =

Ns−1∑
m=0

s[m]s∗[m− n] ,

then rk,mt is obtained by vectorizing the matrix formed by stacking
the vectors [rs[m] rs[m]ej2πν/FPRF . . . rs[m]ej2πν(Np−1)/FPRF ]T,
m=−Nh, . . . , Nh.

V. SIMULATIONS

Real Sea Clutter Covariance Estimation. We first investigated
the validity of the NKPA using real clutter data from the DSTO
INGARA radar sea clutter database [4]. The clutter data was
obtained using the following radar parameter: 96 MHz signal
bandwidth, 8 µs pulse width, 9.375 GHz carrier frequency, 500 Hz
PRF, 1.5 m range resolution and vertical-transmit, vertical-receive
polarization. The wind speed was at 10-12 knots, resulting in a
2-3 sea state. As the true covariance matrix was not available, the
NKPA was validated using the sample covariance matrix, obtained
by averaging across multiple dwells and calculated by constructing
a measurement dwell with Np = 10 pulses and Mk = 10 range bins.
Figure 1(a) shows the singular values of the permuted sample
covariance matrix computed by averaging over 1,700 dwells (3.4
s) from 5 different data sets. The first singular value was the most
dominant one for all 5 sets, thus most of the energy could be
compacted by a single NKPA. Figure 1(b) shows the normalized
Frobenius norm error between the sample covariance and the NKPA
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Fig. 2. (a) Covariance matrix estimation (Frobenius) error (b) Probability of target existence and (c) tracking error for varying SCR: actual
and NKPA (solid), NKPA only (dash).

as a function of sample size. As it can be seen, the error decreases
as the number of samples increases implying, that as the sample
covariance matrix asymptotically approaches the true covariance
matrix the approximation error is also reducing. The approximation
error was around 0.2 for all data sets, indicating that NKPA is a
reasonable approximation to use.

PF-based Clutter Covariance Estimation. We demonstrated
the PF implementation of the covariance estimation using an
LFM signal with Bs = 15 MHz bandwidth, fc = 9.375 GHz carrier
frequency, FPRF = 500 Hz PRF, Np = 11 pulses per dwell, [8000
8300] m validation gate range, 10 m range resolution, 30 range
bins and 60 rpm beam scan rate. The initial covariance matrix
Σz

0 was obtain from compound Gaussian distributed clutter whose
speckle and texture correlation was based on real clutter from the
Osborne Head Gunnery Range (OHGR) IPIX radar [20], [21]. The
speckle samples were drawn from a circularly symmetric complex
Gaussian distribution, and the texture components were distributed
based on a gamma distribution. The sample covariance matrix was
calculated from 3,300 independent dwell measurements. The fast
time clutter measurement was obtained by drawing samples from a
complex Gaussian distribution with the covariance matrix derived at
each dwell. We compared the mean-squared error (MSE) between
the true and estimated temporal and spatial covariance matrices
using a varying number of (50, 100, 250, and 500) particles in
Figure 2(a), averaged over 25 Monte Carlo simulations. Also shown
is the tracking MSE for the sample covariance matrix and its
corresponding NKPA. The sample covariance matrix is obtained
by averaging the measurement from five dwells. The tracking MSE
for the sample covariance matrix is much higher; the MSE is
somewhat reduced when the NKPA of the sample covariance matrix
is used. The tracking MSE of our proposed estimation approach
outperformed the other two methods. The improved performance of
the covariance matrix estimation is due to exploiting the underlying
physical model of the sea structure using the transition matrix F.
Note that the tracking MSE can also be reduced by increasing the
number of particles.

Tracking Application. We applied the clutter estimation ap-
proach to a target tracking problem with similar parameters in
the previous simulation. We compared the performance of the
algorithm to track a low observable target moving at constant
velocity under varying SCR values. The target is assumed to leave
and enter the FOV at dwells 5 and 30, respectively. The initial

position and velocity for the target were set to (5825.7, 5825.7)
m and (-5.4, -5.4) m/s, respectively. PF used 500 particles when
the target survived and 2500 particles when the target entered
the FOV. The tracking error is quantified using the OSPA metric
with parameters c= 100 and p= 2 [22], averaged over 25 Monte-
Carlo simulations. The tracking performance was analyzed under
two conditions: (i) the measurement was generated as in (5) and
the covariance was estimated using (9) and (10); (ii) both the
measurement and the covariance followed the NKPA in (9) and
(10). Figures 2(b) and 2(c) show the probability of target existence
and the tracking error for different SCRs. The latency in detecting
a target increased as the SCR decreased. Similarly, there was delay
in detecting a target leaving the FOV. The probability of detection
was very low at 3 dB SCR and the tracking error was high. As
the probability of detection was in general low, the probability
of detecting a target leaving the FOV at 3 dB was also low, as
evident by lower OSPA values during dwells 30-35. At 6 dB SCR,
the probability of detection increased when the true model does
not follow the NKPA; however, this did not result in increased
tracking performance because of higher OPSA. In general, the
tracking performance improved when the true and assumed models
followed the NKPA. Nevertheless, the performance did not degrade
significantly when the assumed but not the true model followed the
NKPA. This result is relevant to real target tracking applications
since, even if the actual covariance does not completely follow
the KP structure, we can apply the NKPA without significantly
affecting the tracking performance.

VI. CONCLUSION

We impose the KP assumption on the underlying physical model
to efficiently track the space-time covariance matrix. The KP
assumption enables the estimation of rapidly varying sea clutter
by using the sample covariance matrix that is estimated from very
few dwells. Given an accurate state space model representation
of sea clutter, the estimation error using the state space model
with the KP assumption is lower than the NKPA of the sample
covariance matrix. The proposed state space model based method is
implemented using particle filtering. The NKPA is validated using
real sea clutter data, and we applied the estimate to track a lower
observable target in sea clutter. More real sea clutter data should
be analyzed further to accurately generalize our proposed model.
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