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ABSTRACT

Recently, the availability of high-dimensional point process
data in a growing number of application areas is driving the
demand for analysis tools for such data. An extremely chal-
lenging yet important problem is the inference of causal re-
lationships from network data or network topology identifi-
cation. This problem has received little attention in the liter-
ature until very recently. Here we develop, perhaps for the
first time, a distributed optimization algorithm for large-scale
dynamic networks of interacting Hawkes processes. Genomic
data are analyzed to construct a transcriptional regulatory net-
work in embryonic stem cells.

Index Terms— Point process, stochastic intensity, topol-
ogy identification, sparse estimation, distributed optimization

1. INTRODUCTION

In recent years, network data have become ubiquitous in a
range of application domains. An extremely challenging
problem is to infer causal relationships between nodes in a
network given only the network data. This is compounded
by the huge volume of such data which poses considerable
challenges both in terms of storage as well as processing
since traditional statistical methods are not distributed opti-
mization algorithms. Furthermore, they suffer from the curse
of dimensionality problem and quickly become unwieldy in
the high-dimensional setting.

In a growing number of applications the network data are
point processes where information is contained in the random
times at which events occur. Applications typically involve
counting interactions such as phone calls, emails [1, 2] and
neural spike trains [3, 4]. [5] develop methods for the estima-
tion of time-varying Poisson networks that have some limited
history dependence. [3] model the point process stochastic
intensity with history dependence in a finite interval but the
estimation procedure requires fitting parameters to fine time
bins on the interval. [4] develop a sparsity approach to fitting
a network model with limited history dependence. [2] model
pairwise directed interactions between a sender and a receiver

using a multiplicative intensity model. The data are assumed
to include information of the sender and receiver.

In previous work [6, 7], the authors discussed a Hawkes-
Laguerre formulation for the point process stochastic inten-
sity function and developed a l1 regularized least squares pro-
cedure for grouped variables to solve the topology identi-
fication problem for sparse dynamic networks [8]. Subse-
quent work [9] discussed a systematic procedure to rigorously
choose the regularization parameter and presented data analy-
sis of genomic data. It was shown that the optimization prob-
lem is separable in the problem dimension and reduces to a
convex optimization for each node. But for large-scale prob-
lems such as genome-wide analysis of the human genome a
fully decentralized capability for data storage as well as op-
timization is needed. For example, in its pilot phase, the En-
cyclopedia of DNA Elements (ENCODE) Project [10] pro-
vided 29,998 kilobases (kb) of the human genome. These
roughly 30 Mb of data account for only about 1% of the hu-
man genome.

In this paper, we develop a distributed optimization al-
gorithm via the alternating direction method of multipliers
(ADMM) method suitable for such large-scale problems. The
ADMM method was developed in the 70’s [11, 12] but a re-
cent survey paper [13] has renewed interest in the algorithm.
The approach is elegant due to its simplicity and robustness.
Given an optimization problem, the ADMM form is an equiv-
alent optimization problem where the objective function is
separable across a splitting of the optimization variable. This
leads to a decentralized algorithm where the local problems
are solved in parallel. The utility of the ADMM method is
immediately realized for statistical problems that involve op-
timization of a smooth function together with a non-smooth
regularization term where the method naturally decouples the
smooth function from the non-smooth term.

In the remainder of the paper we review the Hawkes-
Laguerre dynamic point process model and the ADMM
method in section 2. The sparse estimation algorithm and
implementation are discussed in section 3. Some data analy-
sis is presented in section 4. The paper concludes in section 5.

Notation. ‖.‖ is the l2 norm. Given x ∈ Rn and P ∈
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Rn×n, ‖x‖P ≡ (xTPx)
1
2 , (α)+ ≡ max(0, α) and Sκ(a) =(

1− κ
‖a‖

)
+
a.

2. BACKGROUND

2.1. Point Process Dynamic Network

Consider a network comprising d nodes where each node
represents a dynamic process. Causal dependencies in the
network are represented by directed links between the nodes
which determine the direction of information flows in the net-
work. The output at each node is a spike train and furthermore
observable on the time interval 0 < t ≤ T . The assumption
that the output at each node is observed is standard (see [14])
so that the estimation problem remains tractable.

The network can be modelled by a multivariate point pro-
cess on the interval (0, T ], characterized through its vector
counting process Nt := N(t) = (N1,t, ..., Nd,t)

T where the
nodal process is a scalar counting process Nk,t := Nk(t) =
# events of the k-th process in (0, t]. We denote the count-
ing process increment as Nδ

k,t = # events of the k-th process
in (t, t + δ] and the history of the vector counting process as
Ht = {Ns, 0 ≤ s < t}.

We introduce a standard assumption in point process the-
ory, the No-Simultaneity condition [15],

P (Σd1N
δ
k,t > 1|Ht) = o(δ)

where limδ→0
o(δ)
δ = 0. This simply means that in an in-

finitesimal time interval with high probability simultaneous
events of any type are not allowed. In the literature this is
also referred to as orderliness [16].

Then, the vector stochastic intensity µt = (µ1,t, ..., µd,t)
T

can be defined as

P (Nδ
k,t = 1|Ht) = µk,tδ + o(δ), k = 1, ..., d

The observations at node k can be modelled as

Yk,t = µk,t + ek,t

where Yk,t := 1
δN

δ
k,t, ek,t is a martingale increment noise

and the stochastic intensity µk,t is modelled by the Hawkes-
Laguerre process [6, 7],

µk,t = ck + Σd1

∫ t

0

hk,j(u)dNj,t−u, k = 1, ..., d (1)

where ck > 0 is the background firing rate and hk,j(.) ≥ 0 is
the impulse response of the directed link to node k from node
j. We follow [6, 7] and expand hk,j in Laguerre polynomials
which is a causal basis [17] (see [6, 7] for further advantages),

hk,j(u) = Σ
pk,j

1 βk,j,l(uβk,j,o)
l−1e−βk,j,ouβk,j,o (2)

where 1
βk,j,o

is a user chosen time constant.
Substituting (2) in (1), the stochastic component due to

node j is

∫ t

0

hk,j(u)dNj,t−u

= Σ
pk,j

1 βk,j,l

∫ t

0

(uβk,j,o)
l−1e−βk,j,ouβk,j,odNj,t−u

= Σ
pk,j

1 βk,j,lψk,j,l;t

≡ βTk,jψk,j;t

where βk,j is the pk,j vector of coefficients of the directed
link to node k from node j.

We thus have a linear (in the parameters) model,

µk,t = ck + βTk ψk;t, k = 1, ..., d (3)

where βk comprises the d vector-valued coefficients of the
directed links to node k assuming a fully connected network.

2.2. Alternating Direction Method of Multipliers

Many optimization problems have the form

min
x
f(x) + g(x)

where f, g are not necessarily convex (or concave). They may
separately have nice features with respect to optimization but
not when they are added. The idea of the alternating direction
method of multipliers (ADMM) is to separate f from g as
follows

min
x,z;x=z

f(x) + g(z)

Now one simply adds a quadratic penalty to enforce equal-
ity. The primal variables x, z are obtained via iterative mini-
mization in alternating manner. Using the scaled dual variable
η [13] we get the following iteration

x(i+1) := arg min
x

(f(x) + ρ
2‖x− z

(i) + η(i)‖2)

z(i+1) := arg min
z

(g(z) + ρ
2‖x

(i+1) − z + η(i)‖2)

η(i+1) := η(i) + x(i+1) − z(i+1)

where ρ > 0 is the penalty parameter and x−z is the residual.
The quadratic penalty greatly improves convergence

properties of the algorithm which have been studied for
example in [18, 19].

3. DECENTRALIZED TOPOLOGY
IDENTIFICATION

We begin by expressing the point process data together with
the Laguerre model (3) as a standard linear regression model

yk = Xkβk + ek

where yk = (Yk,0−ck, Yk,δ−ck..., Yk,T−δ−ck)T andXk =
(Xk,1, ..., Xk,d) with

Xk,j =

 ψk,j,1;0 ... ψk,j,pk,j ;0

...
. . .

...
ψk,j,1;T−δ ... ψk,j,pk,j ;T−δ


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Given the point process observations at each node, the net-
work topology identification problem is to recover a sparse
network by setting some of the vector-valued coefficients βk,j
to zero where directed links do not exist. In the least squares
setting, the problem can be formulated as a l1 regularized least
squares for grouped variables [8, 9],

min
β1,...,βd

Σdk=1

(
1
2‖yk −Xkβk‖2 + λkΣdj=1‖βk,j‖P

)
(4)

where λk = λo
√
ck/δ is the scaled regularization parameter

where the scaling
√
ck/δ is introduced for dimensional con-

sistency (see [9]) and λo is the only tuning parameter. Fol-
lowing [20, 21], we take P = pI with p = max{pk,j , k, j =
1, ..., d}.

Equation (4) is separable in the dimension d and can be
solved as d separate minimizations in parallel

min
βk

1
2‖yk −Xkβk‖2 + λkΣdj=1‖βk,j‖P , k = 1, ..., d (5)

This problem was solved in [8, 9]. Here, we cast the k-
th minimization (5) in the ADMM framework and develop a
fully decentralized solution.

Using νk = λk
√
p, the ADMM form is

min
βk

1
2‖yk −Xkβk‖2 + νkΣdj=1‖zk,j‖ (6)

s.t. βk,j − zk,j = 0, j = 1, ..., d

which for orthonormal Xk,j yields the following updates

β
(i+1)
k,j := αXT

k,j(yk−Xkβ
(i)
k,−j) + (1−α)(z

(i)
k,j−η

(i)
k,j) (7)

z
(i+1)
k,j := Sανk/(1−α)(β

(i+1)
k,j + η

(i)
k,j) (8)

η
(i+1)
k,j := η

(i)
k,j + β

(i+1)
k,j − z(i+1)

k,j (9)

with α = (1 + ρ)−1 so that 0 < α < 1. This gives a useful
interpretation of (7) as a weighted average where small α val-
ues place a strong penalty on violation of the primal feasibil-
ity and therefore produce smaller primal residuals. βk,−j =
(βTk,1, ..., β

T
k,j−1,0

T , βTk,j+1, ..., β
T
k,d)

T and S(.) is the vector
soft thresholding operator.

While orthonormalXk,j is not necessary, the algorithm in
such a case has better numerical properties. For this reason,
orthonormalizing Xk,j is preferred [20]. Note that βk,j in the
penalty term will need to be scaled and transformed back after
the estimation to obtain the original variables.

Given the estimate of βk,

ck = (T/δ)−11T (yk −Xkβk) (10)

3.1. Computational Details

Xk, k = 1, ..., d are known and need to be computed just
once. In the special case that βk,j,o does not depend on k,
X1 = X2 = ... = Xd.

The minimization (6) for k = 1, ..., d can be done con-
currently on d systems. The k-th minimization can be dis-
tributed to d subsystems indexed (k, j). Subsystem (k, j) will

store the T × p and p × pd matrices Xk,j , X
T
k,jXk respec-

tively and the current T and pd vectors yk, βk respectively.
The updates are computed locally in the order (9),(7),(8). The
k-th system will gather βk,j , j = 1, ..., d to do the ck up-
date (10). The updated yk and assembled βk are broadcast
back to the subsystems. The k-th optimization is halted if
max(|c(i+1)

k − c(i)k |, ‖β
(i+1)
k − β(i)

k ‖) < ε for a suitable toler-
ance level ε.

4. TRANSCRIPTIONAL REGULATORY NETWORKS

Transcription factors (TFs), typically proteins, are used by
cells to control gene expression i.e. into various types of cells.
TFs perform their function either alone or by recruiting tran-
scriptional regulators (TRs) and are frequently encoded in dif-
ferent configurations forming a transcriptional regulatory net-
work (TRN).

We analyze genomic data from a study [22] to identify
causal interactions in TRNs in embryonic stem cells. The
data comprise co-ordinates of the binding sites of 13 TFs and
2 TRs.

4.1. Genomic Data Analysis

We use the data from chromosome 1 and following the ap-
proach in [23, 24], transform it to point process data at a res-
olution of δ = 100 base pairs. Nodes with fewer than 100
counts after ensuring No-Simultaneity were dropped. This
led to 12 TFs and 1 TR suz12 with about 500 counts per node.
A raster plot of the output at each node is shown in Fig. 1.

We use Laguerre basis expansion for the impulse response
hk,j , k, j = 1, ..., d with p = 3 terms. We take α = .09.

The regularization parameter λo and tuning parameter
βk,j,o = βo were determined from the Bayesian Information
Criterion (BIC) heat map shown in Fig. 2. BIC = −2L +

Σd1rk ln(Nk,T ) where L = Σd1
∫ T
0

(lnµk,tdNk,t − µk,tdt) is
the multivariate point process log-likelihood [16] and rk = #
active parameters of the k-th node.

We find that for 1 ≤ βo ≤ 10, the BIC plot exhibits a
sharp fall initially with increasing λo values and is nearly flat
for λo ≥ .2. For βo > 10, the BIC values at λo = 0 are
relatively low. The surface falls gradually with increasing λo
values and is nearly flat for λo ≥ .2.

We have found that for a given λo value, the penalized re-
gression algorithm gives a more parsimonious representation
with a smaller βo value but takes longer to converge. We take
λo = .2. As already mentioned, βk,j,o controls the extent of
memory in the model (3). By choosing βk,j,o = βo = 20, we
set the time constant ≈ 20,000 base pairs. Note that in [24]
the history dependence is limited to 1,000 base pairs only.

The starting values of ck, βk were obtained from a stan-
dard least squares estimate by setting negative values to zero
to ensure positivity of the intensity function. The relative
magnitude (J − Ĵ)/Ĵ iterates of the cost function (4) are
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shown in Fig. 3 where Ĵ is the optimal cost at convergence.
Also shown is the relative magnitude of the cost using the
starting values of ck, βk and with λo = 0 to give a compari-
son with standard least squares method. We find that the cost
obtained from the penalized regression algorithm falls mono-
tonically until convergence, after about 40 iterations.

4.2. Results

The TRN recovered by the sparse estimation method is shown
in Fig. 4. The self-exciting link at each node is omitted
to avoid clutter. There were 3 bi-directional interactions;
Oct4↔Sox2, E2f1↔Klf4 and Zfx↔n-Myc. These are indi-
cated by undirected links.

In comparison to the fully connected network with d2 =
169 links and d + d2p = 507 parameters, the sparse estima-
tion method removed 114 links and required 165 parameters.
The network in Fig. 4 shows strong similarity to the network
of 10 TFs estimated in [9] and that of [22] constructed from
experimental studies [25, 26, 22].

The algorithm in [24] estimates a fully connected net-
work and therefore suffers from over-fitting. The choice of
B-splines basis expansion in their log-intensity model may
lead to spurious estimates since B-splines do not form a causal
basis system. Furthermore, the centralized nature of their al-
gorithm places huge memory constraints for implementation.

[26] reported that depleting embryonic stem cells of
Nanog resulted in the downregulation of Sox2 gene ex-
pression which led to the conclusion that Nanog activates
transcription of the Sox2 gene. Since they infer interactions
in a pairwise fashion it is not sufficient to establish the di-
rect link Nanog → Sox2. Our analysis suggests that the
interaction is most likely mediated via Oct4.

In addition, the TRN in Fig. 4 also uncovered some links
that have not been studied experimentally. For example, (Es-
rrb,E2f1)→ Tcfcp211, (Esrrb,E2f1)→ Zfx, Oct4→ Zfx, etc.
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Fig. 1. Raster Plot of Output at the 13 Nodes.

5. CONCLUSIONS

In this paper we have developed a decentralized solution for
topology identification in large-scale dynamic networks in-
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Fig. 4. Transcriptional Regulatory Network in the Mouse Em-
bryonic Stem Cells.

volving point processes. The sparse network estimation prob-
lem formulated as a l1 regularized least squares optimization
for grouped variables is cast in the ADMM form which leads
to local optimization problems that can be solved in parallel
using modest computing resources. We discussed a rigorous
procedure for choosing the regularization parameter and the
tuning parameter. The algorithm was tested on some genomic
data relating to mouse embryonic stem cells.
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