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ABSTRACT

Operator self-similarity naturally extends the concepts of
univariate self-similarity and scale invariance to multivariate
data. Beyond a vector of Hurst parameters, operator self-
similarity models also involve a mixing matrix. The present
contribution aims at estimating the collection of Hurst pa-
rameters in the case where the mixing matrix is not diagonal.
To the best of our knowledge, this has never been achieved.
In addition, the mixing matrix is also identified. The devised
procedure relies on a source separation methodology, since
the underlying components of the operator self-similar pro-
cess are assumed to have a diagonal pre-mixing covariance
structure. The principle behind the demixing procedure is
illustrated based on synthetic 4-variate operator self-similar
processes, with a priori prescribed and controlled Hurst pa-
rameters and mixing matrix. Identification and estimation
performance for both Hurst parameters and mixing matrices
are shown to be very satisfactory, using large size Monte
Carlo simulations.

Index Terms— multivariate scale invariance, operator
self-similarity, source separation, mixing, identification.

1. INTRODUCTION

Scale invariance and self-similarity. The paradigm of scale
invariance is commonly used to analyze signals or systems
where no particular time scale can be singled out as playing
a special role in driving temporal dynamics. Instead, scale
invariance implies that a large continuum of time scales are
all contributing to temporal dynamics. When analyzing such
signals, the focus is hence no longer on identifying specific
scales of time, but rather on evidencing mechanisms that re-
late all scales together, often quantified by scaling exponents
(cf. e.g., [1, 2, 3, 4, 5]).

Stationary increment self-similar processes such as the
(Gaussian) fractional Brownian motion (fBm) [6] have been
widely used as touchstone models for scale invariance. Self-

similarity means that the signalX cannot be (statistically) dis-

tinguished from any of its dilated versions: {X(t)}t∈R
f.d.d.

=
{aHX(t/a)}t∈R, a > 0, where H is referred to as the self-

similarity, or Hurst, parameter, and
f.d.d.

= refers to equality of
finite dimensional distributions. Self-similarity also implies
that the moments of order q > −1 of the wavelet coefficients
dX(j, k) of X behave as power laws with respect to the anal-
ysis scale a = 2j [4, 7, 8] (j, k ∈ Z, j ≥ 0 ) :

E|dX(j, k)|q = E|dX(0, 0)|q2jq(H+1/2). (1)

With such models, the practical analysis of scale invariance
fundamentally amounts to determining the range of scales
where the power law behavior holds and to estimating the
parameter H (cf. e.g., [5] and references therein for a re-
view). Most estimation procedures for H rely on exploiting
the power law behavior in Eq. 1 (cf. e.g., [9] for a review).
Self-similarity has been used as a powerful model to analyze
numerous signals and systems from a wide-ranging spectrum
of applications comprising natural systems (hydrodynamics
turbulence [10], geophysics [11], heart rate variability [12],
infraslow (i.e., below 1Hz) brain activity [13, 14], genomics
[15]) or man-made systems (Internet traffic [16, 5], finance
[17], population growth [18], to list but a few).
Multivariate self-similarity. In the modern era, with tech-
nological developments and mass production, it is common
that one same system is monitored with a large number of
sensors, thus naturally leading to a collection of P signals
recorded jointly, i.e., multivariate data R→ RP . Yet, in most
applications, scale invariance analysis has remained univari-
ate: each signal is analyzed independently. A generalization
of fBm, Operator-fBm (OfBm) has recently been proposed as
a multivariate Gaussian self-similar model [19, 20, 21, 22].
OfBm can be essentially defined by the linear mixing, via a
P ×P matrix W , of P fBms, each with a (potentially) differ-
ent self-similarity parameter, thus defining a vector of param-
eters H = {H1, . . . ,HP }, and made correlated by a P × P
point covariance matrix Σ.
Related Work: OfBm identification. Though conceptu-
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ally appealing as a model to account for multivariate scale in-
variance in data, OfBm has seldom been used in applications,
mostly because it is far more complicated than its counter-
part fBm. Indeed, modeling based on OfBm requires the es-
timation not only of a single scaling parameter H , or even of
P scaling parameters H , but also of two additional P × P
matrices W and Σ. The latter may convey information on
the (physical, physiological,. . . ) mechanisms underlying data
production which is as crucial as that provided by the scal-
ing exponents themselves. The particular case where no mix-
ing is present, i.e., W is diagonal, has already been theoreti-
cally well-analyzed in several contributions [21, 23]. In [24],
wavelet based tests were devised aiming at assessing whether
or not the cross-dependencies of multivariate data followed
OfBm models. In applications, OfBm models with diagonal
W have notably been used to analyze infraslow brain activ-
ity: beyond the traditional estimation of scaling parametersH
(cf. e.g., [25]), it has been recently and successfully used to
assess task performance prediction [14]. Furthermore, func-
tional connectivity (i.e., the way various regions of the brain
interact) is traditionally assessed by measuring correlations
amongst signals associated to each region of the brain [26].
Yet, OfBm models show that correlation amongst components
results from the interplay between W and Σ. It is thus natu-
ral to wonder whether functional connectivity should be as-
sessed based on the overall correlation between components
(i.e., mixing the contributions of both W and Σ) or, rather, on
unmixed components Σ. To address this type of question, it is
crucial to estimate W in situations where W is not diagonal.
However, to the best of our knowledge, the full identification
of OfBm, i.e., the estimation of its 3

2 (P + P 2) parameters
H,W,Σ, has never been addressed, despite its paramount im-
portance in applications.
Goals, contributions and outline. The present contribu-
tion is a first step toward the general and ambitious goal of
fully identifying OfBm. The focus here is on the particular
case where the underlying covariance matrix Σ is diagonal
but W is not: the observed components are correlated due
to mixing, whereas the underlying fBm components are un-
correlated. This models the very interesting situation where
the signals from various originally independent subparts of a
system get mixed up by a number of sensors recording them.
The present contribution devises a joint estimation procedure
for the mixing matrix W and the vector of Hurst parameters
H . It relies on the combination of source separation tech-
niques (joint diagonalization algorithms) and wavelet decom-
positions (described in Sections 2.2 and 2.3, respectively) ap-
plied to the specific subclass of OfBms with diagonal Σ (cf.
Section 2.1). The principle behind the demixing procedure is
illustrated using P -variate synthetic OfBms with prescribed
W and H . The estimation performance is assessed via large
size Monte-Carlo simulations (cf. Section 3).

2. THEORY AND METHODOLOGY

2.1. Operator-fBm with diagonal Σ

Operator self-similarity. The general definition of OfBm
can be found in [19, 21]. Here, definitions are restricted to
the case of diagonal Σ. For 0 < H1 ≤ H2 ≤ . . . ≤ Hp <
1, let BH(t) ≡ {BHp(t), t ∈ R, p = 1, . . . , P} denote P -
independent fBms with covariance functions

EBHp(t)BHp(s) = σ2
p/2(|t|2Hp + |s|2Hp −|t−s|2Hp). (2)

Let W denote a P × P invertible matrix. The subclass of
OfBm BWH of interest here is defined as BWH ≡ WBH .
It corresponds to the subset of the largest class of OfBm
obtained by imposing Σ ≡ Id and diagonalizable matrix
HW ≡ WT diag(H)W [19]. The stationary increment pro-

cesses BWH are operator self-similar, i.e., {BWH (at)}t∈R
fdd
=

{aHWBWH (t)}t∈R, ∀a > 0, with aHW =
∑∞
k=0 logk(a)Hk

W /k!.
By contrast, the entrywise processes making up BH are uni-

variate self-similar, i.e., ∀p = 1, . . . , P , {BHp(at)}t∈R
fdd
=

{aHpBHp(t)}t∈R, a > 0. Assuming a priori that Σ is diago-
nal, the goal of the present contribution is to jointly estimate
the vector of Hurst parameters H and the mixing matrix W ,
from the sole observation of the mixed data BWH .
Covariances. Let Xp(k) = BHp(k + 1) − BHp(k) and
Yp(k) = BWHp(k + 1) − BWHp(k) denote the increments of
the original process BHp and its mixed counterpart BWHp . Let
ΣX(τ) = EXp(k)Xp′(k + τ) denote the covariance of X:
ΣX(τ) ≡ diag(σ2

1rH1
(τ), . . . , σ2

P rHP (τ)), with:

rHp(τ) ≡ |τ + 1|2Hp + |τ − 1|2Hp − 2|τ |2Hp . (3)

By definition, Y ≡ WX . Thus, the covariance of Y involves
both parameters W and H: ΣY (τ) = WΣX(τ)WT .
Ambiguity factors or under-determination. In practice,
we only observe Y and try to estimate both W and H , thus
ΣX(τ). Starting from the covariance ΣY (τ), there are three
forms of ambiguities, or under-determination, in the identifi-
ability of W : First, for τ = 0:

ΣY (0) = EY Y T = WXXTWT = WΣWT

= Wdiag(σ2
1 , . . . , σ

2
P )WT = W ′IdW ′T ,

with W ′ = Wdiag(σ1, . . . , σP ). Thus, Y = WX = W ′X ′,
with ΣX′(0) ≡ Σ = Id. Second, let Π denote a P × P
permutation matrix, i.e., with only one non-zero entry (equal
to 1) per column and lines, then, Y = WX = W ′X ′ with
W ′ = WΠ and X ′ = ΠTX . Third, each column of W
can be individually multiplied by ±1, leading to W ′ = WS.
Here, S is a diagonal matrix with entries±1, andX ′ = STX ,
such that Y = WX = W ′X ′, with ΣX′(0) ≡ Σ = Id.

2.2. Source separation based demixing procedure

Identifiability. Starting from one single observation of finite
length n of a P -variate process Y , the goal is to devise a
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demixing procedure yielding an estimate Ŵ−1 of W−1 such
that process Z = Ŵ−1Y has a covariance matrix ΣZ(τ) as
close as possible to the covariance ΣX(τ) of X . In other
words, ΣZ(τ) should be diagonal for all τ . Following the ter-
minology commonly used in blind source separation (cf. e.g.,
[27]), it will be said that an invertible matrixW is identifiable
when it can be estimated from a single observation Y , up to
the ambiguity factors listed in Section 2.1.
Theorem. An invertible matrix W is identifiable if
and only if all parameters Hp are different: ∀(p, p′) ∈
[1, . . . , P ]2, 0 < Hp 6= Hp′ < 1.
The proof is straightforward, as blind source separation the-
ory teaches us that the identifiability of Gaussian processes
requires the pairwise linear independence of the processes
Xp. In addition to EXp(t)Xp′(t + τ) ≡ 0, the latter con-
dition implies that the covariance functions of Xp and Xp′

cannot be proportional.
Joint Diagonalization. Let {Σ̂Y (τm),m = 0, . . . ,M},
M > 1, denote the sample covariance matrices of Y at
lags τm. Given that the target process Z = Ŵ−1Y should
have diagonal covariance matrices for all τ , we can rely on
some strategy from blind source separation (cf. e.g., [27])
to develop a demixing matrix Ŵ−1 that achieves the joint
diagonalization of Σ̂Y (τm), ∀τm. In the present contribution,
we will focus on the particular choice M = 2, i.e., ΣY (τ)
is estimated for two different lags τ1 ≡ 0 and τ2 ≡ τ . This
enables us to perform an exact joint diagonalization of Σ̂Y (0)
and Σ̂Y (τ) by means of the following procedure [28]:

Step0: From one observation Y , estimate Σ̂Y (0), Σ̂Y (τ) ;

Step1: Set Θ = Σ̂Y (0)
−1/2

;
Step2: Find eigenvectors Q of the matrix ΘΣ̂Y (τ)ΘT ;
Step3: Define Ŵ−1 = QΘ.

To prove that this method permits the identification of W ,
assume that ΣY (0) and ΣY (τ) are known, and used in-
stead of their estimates. Also, assume that Σ ≡ Id. Let
W = V O denote the polar decomposition of W , i.e., V is
positive definite and O is an orthogonal matrix. Given that
ΣY (0) = WTΣX(0)W = WTΣW = WTW , we have that
ΣY (0) = V OOTV T = V V T . Thus, in Step 1, Θ = V −1.
By definition, ΣY (τ) = WTΣX(τ)W , with ΣX(τ) diagonal.
Therefore, ΘΣY (τ)ΘT = V −1V OΣX(τ)OTV TV −1

T
=

OΣX(τ)OT , which thus leads to Q ≡ OT . Thus, Step 3
yields Ŵ−1 = OTV −1 = W−1, as desired.
Under-determination. To address the three ambiguity fac-
tors listed in Section 2.1, the following rules are applied to
the output Ŵ−1 of Step 3: First, each column of Ŵ−1 is
multiplied by a positive number such that squared entries of
the column sum to 1. Second, columns of Ŵ−1 are permuted
so that the estimated Ĥp for each component of Z = Ŵ−1Y
(using the procedure detailed in Section 2.3) are sorted by in-
creasing order. Third, each column p of the permuted matrix
Ŵ−1 is multiplied by the sign of the entry Ŵ−1(p, p).

2.3. Wavelet based Hurst parameter estimation
Wavelet coefficients. The estimation of the Hurst param-
eters is conducted under the classical wavelet framework
devised in [4]. Let ψ be a mother wavelet, characterized
by its uniform regularity index and number of vanishing
moments Nψ . The latter is a positive integer, defined as
∀n = 0, . . . , Nψ−1,

∫
R t

kψ(t)dt ≡ 0 and
∫
R t

Nψψ(t)dt 6= 0.
Let {ψj,k(t) = 2−j/2ψ(2−j/2t− k)}(j,k)∈N2 denote the col-
lection of dilated and translated templates of ψ that form an
orthonormal basis of L2(R). The discrete wavelet trans-
form coefficients of a univariate signal f are defined as
df (j, k) = 〈ψj,k|f〉. For a detailed introduction to wavelet
transforms, see [29].
Estimation of H . For entrywise self-similar processes
f with scalar Hurst parameter H , it is well-known that
E|df (j, k)|2 = 2j(2H+1). Following [4], the estimation
of the parameter H is carried out by means of a weighted
linear regression in a log2 Sf (j) versus log2 2j = j diagram,
with

Sf (j) =

(
nj∑
k=1

|df (j, k)|2
)
/nj , (4)

over a range of scales j1 ≤ j ≤ j2. Thewj represent the usual
weighted linear regression coefficients (cf. e.g., [4]) leading to
the estimator

Ĥ =
1

2

( j2∑
j=j1

(wj log2 Sf (j))− 1
)
. (5)

3. DEMIXING PRINCIPLE AND PERFORMANCE

To illustrate the principle behind the proposed demixing pro-
cedure and to assess its statistical performance, we have set
up the following pedagogical protocol. We synthesize R =
1, 000 realizations of OfBms with P = 4, size n = 216,
H = [0.2, 0.4, 0.6, 0.8] and an invertible mixing matrix W .
For each realization, the same sequence of operations is ap-
plied. First, X are synthesized using the toolbox described
in [30, 31] and relying on a multivariate Circulant Embedded
Matrix procedure. As a benchmark, for each component of
X , SXp(j) is computed as in Eq. 4 and ĤXp is estimated
using Eq. 5. Second, Y = WX is computed. For each
component of Y , SYp(j) and ĤYp are estimated. Third, the
demixing procedure, proposed in Section 2.2, is applied to Y
and yields a demixing matrix Ŵ−1 and demixed time series
Z = Ŵ−1Y . For each component of Z, SZp(j) and ĤZp

are estimated. Simulations were repeated for several matri-
ces W . Results are reported for one arbitrarily chosen W as
performance were all comparable and conclusions identical.

The results consist of comparing the statistics log2〈SXp(j)〉R,
log2〈SYp(j)〉R and log2〈SZp(j)〉R for each of the P = 4 re-
spective components, where 〈·〉R denotes the average over
the R realizations (Fig. 1) ; and distributions (by means of
boxplots) of ĤXp −Hp, ĤYp −Hp ĤZp −Hp (Fig. 2).

As expected, for X , the linear behavior in j of all com-
ponents of log2〈SXp(j)〉R is conspicuous, yielding unbiased
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estimates of HXp . After mixing, though, all components of
log2〈SYp(j)〉R display patent departures from linearity. Be-
cause the wavelet transform is itself linear and all components
of X are independent, then SYp(j) =

∑P
p′=1 αp,p′2

j(2Hp′−1)

for each component of Y , where the matrix α = (αp,p′) de-
pends jointly on WΣWT and H . These mixtures of power
laws clearly explain the departure from linear behavior for
log2〈SYp(j)〉R as well as the strongly biased estimates of
HYp . After demixing, all components of log2〈SZp(j)〉R ex-
hibit saliently linear behavior, remarkably superimposing on
that of log2〈SXp(j)〉R. This provides a striking illustration of
the successful demixing of Y for each realization. In addition,
the distributions for ĤZp −Hp resemble those of ĤXp −Hp,
thus indicating that estimation performance for H based on
the demixed process Z is comparable to that obtained from
the original, premixed X , a very remarkable result.

Further, Fig. 3 shows the estimator distributions (via box-
plots) for each of the P × P entries of Ŵ−1 − W−1. All
entries of W−1 are remarkably estimated, notably with negli-
gible biases.

2 4 6 8 10 12−8

−6

−4

−2

0

2

log2 scale

lo
g2

 W
av

el
et

 S
pe

ct
ru

m

H = 0.2

 

 

Original
Mixed
DeMixed

2 4 6 8 10 12−4

−2

0

2

4

6

log2 scale

lo
g2

 W
av

el
et

 S
pe

ct
ru

m

H = 0.4

 

 

Original
Mixed
DeMixed

2 4 6 8 10 12−2

−1

0

1

2

3

4

log2 scale

lo
g2

 W
av

el
et

 S
pe

ct
ru

m

H = 0.6

 

 

Original
Mixed
DeMixed

2 4 6 8 10 12−2

0

2

4

6

8

log2 scale

lo
g2

 W
av

el
et

 S
pe

ct
ru

m

H = 0.8

 

 

Original
Mixed
DeMixed

Fig. 1. logS(j) vs. j superimposed for processesX (original,
black ‘+’), Y (mixed, blue ‘∗ ’) and Z (demixed, red ‘o’), for
each of the P = 4 components, sorted by ascending order of
Hp. Dashed black line shows the theoretical power law.

Results not shown due to space constraints further indi-
cate that the proposed procedure remains extremely efficient
even for small sample sizes (down to n = 28), though a pre-
cise quantification of the effect of sample size (beyond the
scope of the present contribution) actually depends jointly on
the choices of H and W . Finally, when one is interested in
identifying H only, the assumption of pairwise distinct Hp

can be relaxed. In this case, W is identified up to a multi-
plication by a rotation matrix that affects only the subspace
spanned by the components that share one same H , while the
vector H itself is well-identified.
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Fig. 2. Boxplots Ĥp − Hp obtained from X (original, left),
Y (mixed, middle) and Z (demixed, right), for each of the
P = 4 components, sorted by ascending order of Hp.

−0.02
0

0.02

−0.02
0

0.02

−0.02
0

0.02

−0.02
0

0.02

Fig. 3. Boxplots for the 4× 4 entries of Ŵ−1 −W−1.

4. CONCLUSIONS

To the best of our knowledge, the present contribution puts
forward the first estimator for the entire set of Hurst parame-
ters H for operator self-similarity with non-diagonal mixing
matrixW (in the particular case where Σ is diagonal butW is
not). The proposed procedure also provides a relevant identi-
fication of the entire mixing matrix W , which has never been
achieved either. Improvements on the current procedure will
be further investigated along several lines, such as by com-
paring exact joint diagonalization of only two estimated co-
variance matrices against approximate joint diagonalization
of several such matrices; or by replacing time domain covari-
ance estimations by wavelet domain ones. Furthermore, we
plan to address the general case where Σ is not a priori diag-
onal. The application of the proposed demixing procedure to
multivariate infraslow brain activity data [14] and heart rate
variability [12] are currently under investigation.
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