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ABSTRACT

It is well-known that the Ramanujan-sum cq(n) has applica-
tions in the analysis of periodicity in sequences. Recently
the author developed a new type of Ramanujan-sum repre-
sentation especially suited for finite duration sequences x(n).
This is based on decomposing x(n) into a sum of signals be-
longing to so-called Ramanujan subspaces Sqi . This offers an
efficient way to identify periodic components using integer
computations and projections, since cq(n) is integer valued.
This paper revisits multidimensional signals with periodicity
on possibly nonseparable integer lattices. Multidimensional
Ramanujan-sum and Ramanujan-subspaces are developed for
this case. A Ramanujan-sum based expansion for multidi-
mensional signals is then proposed, which is useful to identify
periodic components on nonseparable lattices.

Index Terms— Ramanujan-sum on lattices, periodicity
lattices, periodic subspaces, integer basis.

1. INTRODUCTION

The Ramanujan-sum [7], introduced by Srinivasa Ramanujan
in 1918, is known to have applications in the analysis of peri-
odicity in sequences [4], [5], [6], [8], [10]. The Ramanujan-
sum is defined as

cq(n) =

q∑
k=1

k,q coprime

ej2πkn/q (1)

It is well known [7] that cq(n) is integer-valued. In recent
work [17]–[18] we developed new Ramanujan-sum represen-
tations especially suited for finite duration (FIR) signals. This
is based on decomposing x(n) into a sum of signals belong-
ing to so-called Ramanujan subspaces Sqi , which were in-
troduced and studied in detail in [17]. This representation
expresses x(n) as a sum of orthogonal sequences xqi(n):

x(n) =
∑
qi|N

φ(qi)−1∑
l=0

βilcqi(n− l)︸ ︷︷ ︸
xqi

(n)

, 1 ≤ n ≤ N (2)

where each xqi(n) ∈ Sqi and has period qi. The notation
qi|N means that qi is a divisor of N .
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In (2) cqi(n) is the qith Ramanujan sum, and there are
φ(qi) circularly shifted versions cqi(n− l) involved in the ex-
pansion, where φ(qi) is the Euler totient (Sec. 1.2). Since∑
qi|N φ(qi) = N (see [2]), Eq. (2) is equivalent to a linear

combination of N basis functions cqi(n− l), where N is also
the signal duration. Since cqi(n) are integers, {cqi(n− l)} is
an integer basis where the basis functions are periodic. The
periodicity components xqi(n), which are orthogonal projec-
tions of x(n) onto the Ramanujan subspaces Sqi , can be com-
puted using projection operators that are integer matrices (up
to a scalar factor) [18]. A practical generalization of this rep-
resentation, which removes some of the restrictions of (2)
(such as the requirement that the hidden periods be divisors
of N ) is presented in [11] based on the so-called Ramanujan
dictionaries, which itself is an improvement over Farey dic-
tionaries introduced in [16].

1.1. Scope and outline

In this paper we generalize the periodic decomposition (2)
to the case of multidimensional (MD) signals. This involves
two things. First, the definition of Ramanujan sums should
be extended to MD signals with integer periodicity matrices
to describe periodicity over lattices. Second, the double-sum
representation (2) should be generalized. We have shown that
both of these are possible. Since the results are quite involved
mathematically, the emphasis here will be on explaining the
main ideas. Details will be presented in a more extensive pub-
lication in the future [19].

Section 2 reviews multidimensional periodic signals on
lattices, and Sec. 3 develops the transition from the Fourier
representation to the proposed multidimensional Ramanujan
style representation. This development is completed in Sec. 4
by defining the Ramanujan sum for multidimensional signals
and using it in the representation.

1.2. Notations and preliminaries

The notation a|b means that a is a divisor of b. (k, q) denotes
the greatest common divisor (gcd) of integers k and q. The
Euler totient function φ(q) is the number of integers in 1 ≤
k ≤ q coprime to q. We use |Q| to denote |det Q|. In multi-
dimensions the definition of Ramanujan sums involves copri-
mality of an integer vector k and an integer matrix Q. The
following definitions, admittedly dense, are therefore crucial:

1. ZD denotes the set of D-dimensional integer column
vectors, and Zp×r denotes the set of p × r integer ma-
trices. U ∈ Zp×p is called unimodular if det U = ±1.
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2. L ∈ Zp×p is a left divisor of P ∈ Zp×r if P = LR for
some R ∈ Zp×r.

3. L ∈ Zp×p is a left common divisor (lcd) of P ∈ Zp×r
and Q ∈ Zp×l if it is a left divisor of both P and Q.
And G is a greatest left common divisor or glcd of P
and Q if it is a lcd, and any left common divisor L is
such that G = LG1 for some G1 ∈ Zp×p. It can be
shown that the glcd exists if and only if [P Q] has rank
p. We say P and Q are left coprime if every glcd is
unimodular.

4. Smith-form: Any rank-ρ matrix P ∈ Zp×r can be writ-
ten as P = UΛV where U and V are unimodular and
Λ ∈ Zp×r is a diagonal matrix (Smith-form of P) with
first ρ diagonal elements 6= 0 and such that λi|λi+1.

2. MULTIDIMENSIONAL PERIODIC SIGNALS

A D-dimensional sequence x(n) is said to be periodic [1] if
there is M ∈ ZD×D such that x(n) = x(n + Mm) for all
m,n ∈ ZD. We call M a repetition matrix. The period itself
should be defined more carefully. We say P is the periodicity
matrix for the periodic signal x(n) if det P > 0 and

x(n) = x(n + Pm) (3)

for all m,n ∈ ZD, and furthermore, P is a left divisor of all
repetition matrices M, i.e., M = PR for some R ∈ ZD×D.
Clearly det P ≤ |det M| as long as det M 6= 0. Thus the pe-
riod has the smallest determinant among all nonsingular rep-
etition matrices. Now consider the set of all vectors of the
form v = Px where x ∈ [0, 1)D, that is, each component xi
satisfies 0 ≤ xi < 1. This region is called the fundamental
parallelepiped of P [12], and is denoted as FPD(P). The
values of the periodic signal x(n) for n ∈ FPD(P) consti-
tute the fundamental period, and these values repeat. Figure
1(a) shows FPD(P) for the periodicity matrix

P =
[

2 3
−2 2

]
(4)

The integers n ∈ FPD(P) are shown by little circles. It can
be shown that there are exactly det P integers in FPD(P)
(ten in this case). The lattice generated by P, denoted as
LAT (P), is the set of all integers of the form n = Pm where
m is an integer vector. Figure 1(a) shows some integers in
LAT (P) using black circles. So the periodicity matrix de-
fines a lattice such that the values of x(n) in FPD(P) are
repeated at the periodically shifted points defined by the lat-
tice. Given any unimodular matrix U, it is readily shown that
P and PU generate the same lattice. So if P is the period,
then so is PU. But the FPD generated by PU is different.

3. FROM FOURIER TO RAMANUJAN

Now, let x(n) be a finite duration signal (FIR signal) with
support in FPD(P). Or equivalently we can think of it as a
periodic signal with repetition matrix P. For such a signal we
would like to develop a representation similar to the recent
Ramanujan representation (2). Since the Ramanujan sums
cqi(n) are defined as in Eq. (1), the representation is closely
related to the DFT representation as explained in Sec. V.E
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Fig. 1. (a) FPD(P) and (b) LAT (P) where P is as in Eq. (4).
The origin is in the FPD, and is a lattice point as well. Other lattice
points are shown by black circles.

of [18]. We shall therefore start from the multidimensional
DFT representation [1] for a signal supported in FPD(P),
and define an appropriate set of left divisors Pi for P (analo-
gous to qi|q in Eq. (2)). For each such divisor we will define a
sum analogous to Eq. (1), and eventually arrive at the desired
representation. Stated this way, it appears to be a straight-
forward extension of the 1D case, but there are a number of
subtleties involved. For example, unlike (2) where all divi-
sors qi are involved, only a subset of left divisors of P will
be involved, called the legitimate divisors. Secondly, it turns
out that the definition of multidimensional Ramanujan sum
for Pi becomes degenerate unless Pi is a legitimate divisor
of P. The beauty of the development is that, in spite of these
restrictions, the representation to be developed works out al-
right for any P we start with. The restrictions are only on
the left divisors Pi, and there are always enough legitimate
divisors for any P, to admit the proposed representation.

With a 1D signal x(n) supported in 0 ≤ n ≤ P − 1

the DFT representation is x(n) =
∑P−1
k=0 a(k)ej2πkn/P ,

where a(k) are the DFT coefficients (more precisely a(k) =
X[k]/P ). In the same way it is well known [1], [12] that
if x(n) is an FIR signal supported in FPD(P) where
P ∈ ZD×D, we can represent it as

x(n) =
∑

k∈FPD(PT )

a(k)ej2πk
TP−1n, n ∈ FPD(P) (5)

Viewed as a function of n, the right hand side above is
periodic with repetition matrix P. Similarly, viewed as a
function of k, it is periodic with repetition matrix PT . Fig-
ure 2 demonstrates the difference between FPD(P) and
FPD(PT ) when P is as in Eq. (4).

There are det P integer vectors k in FPD(PT ) as
demonstrated in Fig. 2. Choose such a k, and let L de-
note a glcd of k and PT , that is, k = Lkr, PT = LPT

r , and
kr and PT

r are left coprime. Thus kTP−1 = kTr P−1r , and
for each k ∈ FPD(PT ) we can rewrite

ej2πk
TP−1n = ej2πk

T
r P−1

r n (6)
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Fig. 2. (a) FPD(P) and (b) FPD(PT ) where P is as in Eq. (4).
In the DFT representation (5), n ∈ FPD(P) and k ∈ FPD(PT ).

where kr and PT
r are left coprime, and Pr is a left divi-

sor of P (since P = PrL
T ). As we go through each k ∈

FPD(PT ) to rewrite the exponential in reduced form (6), let
us keep track of the left divisors generated in the process:

P1,P2, · · · ,PK . (7)

For each Pi we have a certain number of ki such that ki and
PT
i are left coprime. It can be shown [19] that the set of ki

thus associated with each Pi is a subset of the det Pi inte-
ger vectors in FPD(PT

i ). Thus, the summation in (5) can be
rearranged as a double summation:

x(n) =

K∑
i=1

∑
ki∈FPD(PT

i
)

(ki,P
T
i

)l=I

a(ki)e
j2πkT

i P−1
i n

︸ ︷︷ ︸
call this xi(n)

(8)

Here (ki,P
T
i )l = I means that ki and PT

i are left coprime.
A signal of the form xi(n) in Eq. (8) belongs to the space
spanned by the basis functions

{ej2πk
T
i P−1

i n}, ki ∈ FPD(PT
i ), (ki,P

T
i )l = I (9)

These constitute a subset of the det P columns of the multidi-
mensional IDFT matrix corresponding to P, and are therefore
orthogonal [12]. The space SPi ⊂ Z|P| spanned by (9) will
be called the Ramanujan subspace corresponding to Pi, by
analogy with a similar development in the 1D case [17]. The
spaces SPi

are orthogonal for different i. Notice that the ex-
ponentials in (9) can be regarded as column vectors by fixing
an ordering convention for the vectors ni ∈ FPD(P). The
ambiguity of ordering can be avoided by using tensor nota-
tion: for example in 2D regard the signals as matrices (im-
ages), in 3D regard them as 3-dimensional tensors, and so on.

The signals xi(n) ∈ SPi
have repetition matrix Pi, so Eq.

(8) can be regarded as a decomposition of x(n) into periodic
components, the “smaller” periods Pi being some of the left
divisors of P. We next define multidimensional Ramanujan
sums and explain how the decomposition (8) relates to them.
We will also explain which left-divisors of Pi participate in
the summation (8).

4. MULTIDIMENSIONAL RAMANUJAN-SUM

Given a rank-D integer matrix Q ∈ ZD×D, define the sum

cQ(n) =
∑

k∈FPD(QT )

(k,QT )l=I

ej2πk
TQ−1n (10)

where n ∈ ZD. This will be called the D-dimensional
Ramanujan-sum, in analogy with (1). The sum is performed
over k ∈ FPD(QT ) such that k and QT are left coprime. It
turns out [19] that there exist k in FPD(QT ) coprime to QT

if and only if the Smith decomposition Q = UΛV is such
that the Smith-form Λ takes the special form

Λ =
[

I 0
0 λ

]
(11)

where λ = |det Q| > 0. Furthermore when this is satisfied,
the number of k in FPD(QT ) coprime to QT is precisely

φ(λ) = φ(|det Q|) (12)

where φ(.) denotes the Euler totient function. Thus the Ra-
manujan space SQ (defined in Sec. 3) has dimension φ(λ).
There is a result [19] that connects the summation (10) to the
1D Ramanujan-sum: whenever Q has the Smith-form (11) it
can be shown that

cQ(n) = cλ(m) (13)

where m = [U−1n]D (i.e., m is the last element of U−1n).
So cQ(n) is integer valued because the 1D Ramanujan sum
cλ(m) is integer valued. Furthermore, as n takes on the det Q
values in FPD(Q), the scalar integer m takes all values in
0 ≤ m ≤ λ − 1 in some order. Now, the beauty about the
sum (10) is that, the space SQ can be spanned by an integer
basis generated from cQ(n) or equivalently cλ(m). To be
more specific, consider the φ(λ) circularly shifted versions of
cλ(m) as demonstrated below for λ = 4:

 c4(0) c4(3)
c4(1) c4(0)
c4(2) c4(1)
c4(3) c4(2)

 (14)

Then for any Q with λ = 4, the Ramanujan space SQ is
spanned by the above two columns (for appropriate ordering
convention of the integer vectors ni ∈ FPD(Q)). Returning
to the representation (8) it now follows that each inner sum
has φ(det Pi) terms (by Eq. (12)). Since the total number of
terms is det P it follows that

K∑
i=1

φ(|det Pi|) = |det P| (15)

It can be shown [19] that Eq. (8) can be rewritten in terms of
cPi

(n) as follows:

x(n) =

K∑
i=1

∑
m

βi,mcPi
(n−m)︸ ︷︷ ︸

xi(n)

(16)

Here the summation over m has φ(λi) terms, where λi =
|det Pi|. For example the precise set of m which partici-
pates in the ith inner sum can be taken to be those that sat-
isfy cPi(m) = cλi(m) for the first φ(λi) values of m, i.e.,
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0 ≤ m ≤ φ(λi) − 1. Once again the use of tensor notation
will make this ordering easier to track but we shall not get into
details here. We will refer to Eq. (16) as the multidimensional
Ramanujan representation.

The matrices Pi in Eq. (8) and Eq. (16) are a subset of left
divisors of P. The question arises as to which divisors of P
participate. The answer, as shown in [19], is that it is precisely
the set of all divisors which have the restricted Smith form

Λi =
[

I 0
0 λi

]
(17)

Such left divisors of P will be called the legitimate left divi-
sors of P. The relation (15) can be regarded as a generaliza-
tion of the well-known 1D result

∑
qi|q φ(qi) = q proved in

[2]. The following example will demonstrate some of these
details. Thus consider the simple example

P =
[

2 0
0 2

]
(18)

First, what are the left divisors of P? Some of them are

P1 = I, P2 =
[

1 0
0 2

]
, P3 =

[
2 0
0 1

]
, P = 2I (19)

But there are more divisors. For example

P4 =
[

1 1
−1 1

]
(20)

is a left divisor because P = P4P
T
4 .Now consider the Smith-

forms of these divisors. P1,P2 and P are already in Smith-
form. Since det P3 = det P4 = 2 it follows that P3 and P4
also have Smith-form

Λ =
[

1 0
0 2

]
(21)

Only the Smith-form of P is not as in (17) which means that
no k can be left-coprime to PT . Thus, the divisor P is not
included in (7) and in the representations (8), (16). This is a
sharp departure from the 1D case where all divisors qi of q,
including q, are used in the representation (2). Each of the
above Pi has precisely one ki ∈ FPD(PT

i ) such that ki and
PT
i are coprime. These are listed below and shown in Fig.

3. To follow these details it is helpful to notice the following
result proved in [19]: Consider the integer vector and integer
diagonal matrix below:

k =


k1
k2
...
kD

 , Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λD

 (22)

These are left coprime if and only if (ki, λi) = 1 and
(λi, λj) = 1 for i 6= j. Referring now to (19) and (20),
we have the following:

1. The only vector in FPD(PT
1 ) is k11 = [ 0 0 ]

T , and
it is coprime to P1 (in the degenerate sense that 0 is
coprime to 1). The vectors in FPD(PT

2 ) are k21 =

[ 0 0 ]
T and k22 = [ 0 1 ]

T
. k22 is left coprime to

PT
2 . The vectors in FPD(PT

3 ) are k31 = [ 0 0 ]
T

and k32 = [ 1 0 ]
T
, and k32 is left coprime to PT

3 .

2. Now consider P4. The vectors inFPD(PT
4 ) are k41 =

[ 0 0 ]
T and k42 = [ 0 1 ]

T
.With some effort we can

prove that k42 is left coprime to PT
4 .

Fig. 4 (top) shows an image x(n) with periodicity matrix
(18) and the four periodic components xi(n) corresponding to
the periodicity matrices Pi. These are the orthogonal projec-
tions of x(n) onto the Ramanujan subspaces SPi

. (We have
added constants to make the images nonnegative for plotting.)
Notice the 4th periodic component corresponding to P4 has
a quincunx (nonseparable) periodic lattice [12], even though
the original image has a separable periodic lattice.
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Fig. 3. The regions FPD(Pi) for the various divisors in the exam-
ple are shown. Also shown are the integers inside these FPDs.
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Fig. 4. Top: an arbitrary 2D image with periodicity matrix P as in
Eq. (18). Middle and bottom: the four periodic components obtained
by Ramanujan-space projections.

5. CONCLUDING REMARKS

We generalized the Ramanujan-sum for the multidimensional
case from the viewpoint of periodicity on lattices. We also
presented a way to decompose an arbitrary finite duration
multidimensional signal in terms of this generalized Ramanu-
jan sum. The techniques for calculating the periodic projec-
tions xi(n) are in principle similar to the 1D case, but the de-
tails will be developed in future work. Practical applications
of this decomposition are yet to be developed.
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