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ABSTRACT

The super-resolution theory developed recently by Candès and
Fernandes-Granda aims to recover fine details in a sparse frequency
spectrum from coarse scale information. The theory was then ex-
tended to the cases of compressive samples and/or multiple measure-
ment vectors. However, the existing atomic norm (or total variation
norm) techniques succeed only if the frequencies are sufficiently
separated, prohibiting commonly known high resolution. In this
paper, a reweighted atomic-norm minimization (RAM) approach is
proposed which iteratively carries out atomic norm minimization
(ANM) with a sound reweighting strategy that enhances sparsity
and resolution. It is demonstrated analytically and via numerical
simulations that the proposed method achieves high resolution with
application to DOA estimation.

Index Terms— Continuous compressed sensing, high resolu-
tion, reweighted atomic norm minimization, super-resolution.

1. INTRODUCTION

Frequency analysis of signals [1] is a classical problem that has
broad applications ranging from communications, radar, array pro-
cessing to seismology and astronomy. Grid-based sparse methods
have been vastly studied in the past decade with the development
of compressed sensing (CS) which exploit signal sparsity–the num-
ber of frequency components K is small–but suffer from basis mis-
matches due to the need of gridding the frequency interval [2, 3].
The research has recently been advanced owing to the mathemati-
cal theory of super-resolution introduced by Candès and Fernandes-
Granda [4], which refers to the recovery of fine details in a sparse
frequency spectrum from coarse scale time-domain samples. They
proposed a gridless atomic norm (or total variation norm) technique,
which can be cast as semidefinite programming (SDP), and proved
that a continuous frequency spectrum can be recovered with infinite
precision given a set of N regularly spaced samples. The technical
method and theoretical result were extended by Tang et al. [5] to the
case of partial/compressive samples, showing that only a number of
M = O (K lnK lnN) random samples are sufficient for the re-
covery with high probability via atomic norm minimization (ANM).
Moreover, Yang and Xie [6, 7] studied the multiple-measurement-
vector (MMV) case, which arises naturally in array processing ap-
plications, with similar results proven using extended MMV atomic
norm methods. However, a major problem of the existing atomic
norm methods is that the frequency spectrum can be recovered on-
ly when the frequencies are sufficiently separated, prohibiting com-
monly known high resolution–the capability of resolving two closely
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spaced frequency components. In theory a sufficient frequency sepa-
ration condition is 4

N
. Empirically, this number can be reduced to 1

N
(see [5]); it also was shown to depend on K, M and the number of
measurement vectors (see [7, 8]). Another gridless sparse method is
gridless SPICE (GLS), which was derived from a statistical perspec-
tive and is hyperparameter-free but is closely related to the atomic
norm methods (see [8–10]).

To break the resolution limit of the existing atomic norm meth-
ods, in this paper, we propose a high resolution gridless sparse
method for super-resolution (possibly, with compressive data and
MMVs). Our method is motivated by the formulations and proper-
ties of atomic `0 norm and the atomic norm in [6, 7]. In particular,
the atomic `0 norm exhibits no resolution limit but is NP hard to
compute. To the contrary, as a convex relaxation the atomic norm
can be efficiently computed but suffers from a resolution limit as
mentioned above. We propose a novel sparse metric and theoretical-
ly show that the new metric fills the gap between the atomic `0 norm
and the atomic norm. It approaches the former under appropriate
parameter setting. With the sparse metric we formulate a noncon-
vex optimization problem and present a locally convergent iterative
algorithm. The algorithm iteratively carries out ANM with a sound
reweighting strategy, which determines preference of frequency
selection based on the latest estimate and enhances sparsity and
resolution, and is termed as reweighted atomic-norm minimization
(RAM). To the best of our knowledge, RAM implements the first
reweighting strategy in the continuous dictionary setting whereas
existing reweighted algorithms (see, e.g., [11]) can only deal with
the discrete setting. Extensive numerical simulations are provid-
ed to demonstrate the high resolution performance of RAM with
application to DOA estimation compared to existing arts.

2. PRELIMINARY RESULTS

2.1. Problem Formulation

We consider the super-resolution problem in the most general case
with compressive samples and MMVs. In particular, we observe the
samples of the data matrix Y o ∈ CN×L on the rows indexed by
Ω ⊂ [N ] , {1, 2, . . . , N} of size M = |Ω| ≤ N , denoted by Y o

Ω.
The (j, t)th element of Y o is (corrupted by noise in practice)

yojt =

K∑
k=1

a (fk) sk, (j, t) ∈ [N ]× [L] , (1)

where a (f) =
[
1, ei2πf , . . . , ei2π(N−1)f

]T
∈ CN denotes a dis-

crete complex sinusoid with frequency f ∈ T , [0, 1], and sk ∈
C1×L is the coefficient vector of the kth sinusoid. That is, each
column of Y o is a linear combination of K discrete sinusoids. We
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are interested in recovering the frequencies {fk} given Y o
Ω. Mean-

while, it is also of interest to recover the full data matrix Y o. The
resulting problem is also known as continuous/off-grid CS, which
differs from the existing CS framework in the sense that every fre-
quency fk can take any continuous value in T rather than constrained
on a finite discrete grid (see [5, 6]). The single-measurement-vector
(SMV) case where L = 1 is known as line spectral estimation. The
MMV case where L > 1 is common in array processing. Therein
the sampling index set Ω refers to sensor placement of a linear sen-
sor array and a smaller sample size means use of less sensors. Y o

Ω

consists of measurements of the sensor array and each column vec-
tor corresponds to one data snapshot. Each frequency corresponds
to the direction of one source. Therefore, the frequency estimation
problem is known as direction of arrival (DOA) estimation.

2.2. Existing Gridless Sparse Methods

The super-resolution or continuous CS problem is tackled from the
perspective of signal recovery. The frequencies are then retrieved
from the computational result. In particular, we seek a frequency-
sparse candidate Y , which is composed of a few frequency compo-
nents, in a feasible domain defined by the observed samples. To do
this, we first define a sparse metric of Y and then optimize the metric
over the feasible domain. A direct sparse metric is the smallest num-
ber of frequency components composing Y , known as the atomic `0
norm and denoted by ‖Y ‖A,0. It follows from [5–7] that ‖Y ‖A,0
can be characterized as the following rank minimization problem:

‖Y ‖A,0 = min
u

rank (T (u)) ,

subject to tr
(
Y HT (u)−1 Y

)
< +∞,

T (u) ≥ 0.

(2)

The first constraint in (2) imposes that Y lies in the range space
of a (Hermitian) Toeplitz matrix T (u) ∈ CN×N whose first row
is specified by the transpose of u ∈ CN . The frequencies com-
posing Y are encoded in T (u). Once an optimizer of u, say u∗,
is obtained the frequencies can be retrieved from T (u∗) using the
Vandermonde decomposition, which says that any positive semidef-
inite (PSD) Toeplitz matrix T (u∗) can be decomposed as T (u∗) =∑K∗

k=1 p
∗
ka (f∗k )a (f∗k )H , where the orderK∗ = rank (T (u∗)) and

p∗k > 0 (see [1] and a computational method in [8, Appendix A]).
The atomic `0 norm directly enhances sparsity, however, it is NP-
hard to compute and encourages computationally feasible alterna-
tives. In this spirit, the atomic (`1) norm, denoted by ‖Y ‖A, is
introduced as a convex relaxation of ‖Y ‖A,0 and has the following
semidefinite formulation [5–7]:

‖Y ‖A = min
u

1

2
√
N

[
tr (T (u)) + tr

(
Y HT (u)−1 Y

)]
,

subject to T (u) ≥ 0.

(3)

From the perspective of low rank matrix recovery (LRMR), (3) at-
tempts to recover the low rank matrix T (u) by relaxing the pseudo-
rank norm in (2) to the nuclear norm (or the trace norm for a PSD
matrix). The atomic norm is advantageous in computation compared
to the atomic `0 norm; however, it suffers from a resolution limit due
to the relaxation which is not shared by the latter [4, 5, 7].
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Fig. 1. The sparsity-promoting property of Mε (·) with differen-
t ε. The plotted curves include the `0 and `1 norms correspond-
ing to ‖·‖A,0 and ‖·‖A respectively, and ln |λ+ ε| corresponding to
Mε (·) with ε = 10, 1, 0.1, 10−3 and 10−6. ln |λ+ ε| is translated
and scaled such that it equals 0 and 1 at λ = 0 and 1 respectively for
better illustration.

3. ENHANCING SPARSITY AND RESOLUTION VIA A
NOVEL SPARSE METRIC

Inspired by the link between continuous CS and LRMR, we propose
the following sparse metric of Y :

Mε (Y ) = min
u

ln |T (u) + εI|+ tr
(
Y HT (u)−1 Y

)
,

subject to T (u) ≥ 0,
(4)

where ε > 0 is a regularization parameter. Note that the log-det
heuristic ln |·| is a common smooth surrogate of the matrix rank (see,
e.g., [12]). From the perspective of LRMR, the atomic `0 norm mini-
mizes the number of nonzero eigenvalues of T (u) while the atomic
norm minimizes the sum of the eigenvalues. In contrast, the new
metricMε (Y ) puts penalty on

∑N
k=1 ln |λk + ε|, where {λk}Nk=1

denotes the eigenvalues. The function h(λ) = ln |λ+ ε|with differ-
ent ε’s is plotted in Fig. 1. We expect that the new metricMε (Y )
bridges ‖Y ‖A and ‖Y ‖A,0 when ε varies from +∞ to 0. Formal-
ly, we have the results below and we provide their proofs in the full
version of this paper [13].

Theorem 1 Let ε→ +∞. Then,

Mε (Y )−N ln ε ∼ 2
√
N ‖Y ‖A ε

− 1
2 , (5)

i.e., they are equivalent infinitesimals.

Theorem 2 Let ε→ 0. Then, we have the following results:

1. If ‖Y ‖A,0 ≤ N − 1, then

Mε (Y ) ∼
(
‖Y ‖A,0 −N

)
ln

1

ε
, (6)

i.e., they are equivalent infinities. Otherwise, Mε (Y ) is a
positive constant depending only on Y ;

2. Let u∗ε be the optimizer of u to the optimization problem in
(4). Then, the smallest N − ‖Y ‖A,0 eigenvalues of T (u∗ε )
are either zero or approach zero as fast as ε;

3. For any cluster point of u∗ε at ε = 0, denoted by u∗0, there ex-
ists an atomic decomposition Y =

∑K
k=1 a (fk) sk of order

K = ‖Y ‖A,0 such that T (u∗0) =
∑K
k=1 ‖sk‖

2
2 a (fk)a (fk)H .
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Theorem 1 shows that the new metricMε (Y ) plays the same
role as ‖Y ‖A in the limiting scenario when ε → +∞, while Theo-
rem 2 says that it is equivalent to ‖Y ‖A,0 as ε→ 0. Consequently, it
fills the gap between ‖Y ‖A and ‖Y ‖A,0 and enhances sparsity and
resolution compared to ‖Y ‖A as ε gets small. Moreover, Theorem
2 characterizes the properties of the optimizer u∗ε as ε → 0 includ-
ing the convergent speed of the smallest N − K eigenvalues and
the limiting form of T (u∗) via the Vandermonde decomposition. In
fact, we always observe via simulations that the smallest N − K
eigenvalues of T (u∗) become zero once ε is modestly small.

4. REWEIGHTED ATOMIC-NORM MINIMIZATION

4.1. A Locally Convergent Iterative Algorithm

With the proposed sparse metric Mε (Y ), we solve the following
optimization problem for signal and frequency recovery:

min
Y
Mε (Y ) , subject to Y ∈ D, (7)

or equivalently,

min
Y ,u

ln |T (u) + εI|+ tr
(
Y HT (u)−1 Y

)
,

subject to T (u) ≥ 0 and Y ∈ D,
(8)

where D denotes the feasible domain of Y . For example, in the
noiseless case, it is the set {Y : Y Ω = Y o

Ω}. Since the log-det term
ln |T (u) + εI| is a concave function of u, the problem is noncon-
vex and no efficient algorithms can guarantee to obtain the global op-
timum. A majorization-maximization (MM) algorithm is introduced
as follows. Let uj denote the jth iterate of the optimization vari-
able u. Then, at the (j + 1)th iteration we replace ln |T (u) + εI|
by its tangent plane at the current value u = uj . As a result, the
optimization problem at the (j + 1)th iteration becomes

min
Y ,u

tr
[
(T (uj) + εI)−1 T (u)

]
+ tr

(
Y HT (u)−1 Y

)
,

subject to T (u) ≥ 0, Y ∈ D.
(9)

Since ln |T (u) + εI| is strictly concave in u, at each iteration its
value decreases by an amount greater than the decrease of its tangent
plane. It follows that the objective function in (8) monotonically
decreases at each iteration and converges to a local minimum.

4.2. Interpretation as RAM

To interpret the optimization problem in (9), let us define a weighted
continuous dictionary

Aw , {aw (f) = w (f)a (f) : f ∈ T} (10)

w.r.t. the original continuous dictionary {a (f) : f ∈ T}, where
w (f) ≥ 0 is a weighting function. For Y ∈ CN×L, we define
its weighted atomic norm w.r.t. Aw as its atomic norm induced by
Aw:

‖Y ‖Aw , inf
sw
k
, fk

{∑
k

‖swk ‖2 : Y =
∑
k

aw (fk) swk

}

= inf
sk, fk

{∑
k

w (fk)−1 ‖sk‖2 : Y =
∑
k

a (fk) sk

}
.

(11)

By the definition above, w (f) specifies preference of the atoms
{a (f)}. To be specific, an atom a (f0), f0 ∈ T, is more likely
selected if w (f0) is larger. Moreover, the atomic norm is a special
case of the weighted atomic norm with a constant weighting function
(i.e., without any preference).

Theorem 3 Assume that w (f) = 1√
a(f)HWa(f)

, where W ∈

CN×N . Then,

‖Y ‖Aw = min
u

√
N

2
tr (WT (u)) +

1

2
√
N

tr
(
Y HT (u)−1 Y

)
,

subject to T (u) ≥ 0.

(12)

Let W j = 1
N

(T (uj) + εI)−1 andwj (f) = 1√
aH (f)W ja(f)

.

By Theorem 3 we can write the optimization problem in (9) as the
following weighted atomic norm minimization problem:

min
Y
‖Y ‖Awj , subject to Y ∈ D. (13)

As a result, the proposed iterative algorithm can be interpreted as
reweighted atomic-norm minimization (RAM). If we let w0(f) be a
constant function or equivalently, u0 = 0, such that there is no pref-
erence of the atoms at the first iteration, then the first iteration coin-
cides with the ANM. From the second iteration on, the preference is
defined by the weighting function wj (f) specified above. Note that
w2
j (f) corresponds to the power spectrum of Capon’s beamforming

(see, e.g., [1]) if T (uj) is interpreted as the covariance of the noise-
less data and ε as the noise variance. Therefore, the reweighting
strategy makes the frequencies around the estimates of the current it-
eration preferable at the ensuing iteration and thus enhances sparsity.
At the same time, the preference gradually highlights the spectrum
near the estimated frequencies and therefore enhances resolution. S-
ince the “noise variance” ε can be translated as the confidence level
in the current estimate, from this perspective we should gradually de-
crease ε and correspondingly increase the confidence in the solution
during the algorithm.

5. NUMERICAL SIMULATIONS

5.1. Sparsity-Separation Phase Transition

In this subsection, we study the success rate of RAM for super-
resolution compared to ANM. In particular, we fix N = 64 and
M = 30 with the sampling index set Ω being generated uniform-
ly at random. We vary the duo (K,∆f ). At each combination K
frequencies are randomly generated such that they are mutually sep-
arated by at least ∆f . The amplitudes {skt} are independently gen-
erated from a standard complex normal distribution. After obtain-
ing the noiseless samples, we carry out super-resolution using ANM
and RAM, both implemented by an off-the-shelf SDP solver SDP-
T3 [14]. The recovery is called successful if both the relative MSE
of signal recovery and the MSE of frequency recovery are less than
10−12. At each combination (K,∆f ), the success rate is measured
over 20 Monte Carlo runs. In RAM, we first scale the measurements
such that ‖Y Ω‖2F = M and compensate the recovery afterwards.
We start with u0 = 0 and ε = 1 as default. We halve ε when begin-
ning a new iteration until ε = 1

210
. We terminate RAM if the relative

change (in Frobenius norm) of the solution Y ∗ at two consecutive
iterations is less than 10−6 or the maximum number of iterations, set
to 20, is reached.
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Fig. 2. Sparsity-separation phase transitions of ANM (left) and
RAM (right) with L = 1 (top) and L = 5 (bottom), N = 64
andM = 30. The grayscale images present the success rates, where
white and black colors indicate complete success and complete fail-
ure, respectively.

We plot the success rates of ANM and RAM with L = 1, 5 in
Fig. 2, where it is shown that successful recovery can be obtained
with more ease with a smaller K and a larger frequency separation
∆f , leading to a phase transition in the sparsity-separation domain.
It is shown that RAM significantly enlarges the success phase and
hence enhances sparsity and resolution compared to ANM. AtL = 5
we did not find a single failure in our simulation whenever K ≤ 20
and ∆f ≥ 0.3

N
. The phase transitions of both ANM and RAM are

not sharp since the frequencies are separated by at least ∆f and a set
of well separated frequencies can be possibly generated at a small
value of ∆f . It is also observed that RAM tends to converge in less
iterations with a smaller K and a larger ∆f .

5.2. Application to DOA Estimation

We apply the proposed RAM method to DOA estimation. In partic-
ular, we consider a 10-element sparse linear array (SLA) with sen-
sors’ positions indexed by Ω = {1, 2, 5, 6, 8, 12, 15, 17, 19, 20},
where the distance between the first two sensors is half the wave-
length. Hence, we have that N = 20 and M = 10. We consider
that K = 4 narrowband sources impinge on the sensor array from
directions corresponding to frequencies 0.1, 0.11, 0.2 and 0.5, and
powers 10, 10, 3 and 1, respectively. It is challenging to separate the
first two sources which are separated by only 0.2

N
. Complex normal

noise is added to the samples with variance σ2 = 1 andD is defined
as
{
Y : ‖Y Ω − Y o

Ω‖F ≤ η
}

, where η2 =
(
ML+ 2

√
ML

)
σ2

(mean + twice standard deviation) upper bounds the noise energy
with high probability. We consider both the cases of uncorrelated
and correlated sources while the latter case is more difficult to dealt
with using existing methods such as MUSIC (see, e.g., [1]). In the
latter case, sources 1 and 3 are set to be coherent (completely cor-
related). Assume that L = 200 data snapshots are collected which
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Fig. 3. Results of MUSIC (top), ANM (middle) and RAM (bottom)
for DOA estimation with uncorrelated (left) and correlated (right)
sources in 100 Monte Carlo runs. The area around the first two
sources are zoomed in in each subfigure.

are corrupted by i.i.d. Gaussian noise of unit variance. We propose
a dimension reduction technique to reduce the order of the SDP ma-
trix from L+N to M +N and accelerate the computational speed,
which is detailed in [13]. We terminate RAM within maximally 10
iterations and consider MUSIC and ANM for comparison.

Our simulation results of 100 Monte Carlo runs are presented
in Fig. 3 (for MUSIC only the first 20 runs are presented for better
illustration). In the absence of source correlations, MUSIC has sat-
isfactory performance in most scenarios. However, its power spec-
trum exhibits only a single peak around the first two sources (i.e.,
the two sources cannot be separated) in at least 3 out of the first 20
runs (indicated by the arrows). Moreover, MUSIC is sensitive to
source correlations and cannot detect source 1 when it is coherent
with source 3. ANM cannot separate the first two sources in the un-
correlated source case and always produces many spurious sources.
In contrast, the proposed RAM always correctly detects 4 sources
near the true locations, demonstrating its capabilities in enhancing s-
parsity and high resolution. ANM and RAM take 0.87s and 7.31s on
average, respectively, while these numbers can be greatly decreased
using more sophisticated algorithms (see [13]).

6. CONCLUSION

In this paper, we studied the super-resolution problem with compres-
sive samples and MMVs. Motivated by its connection to LRMR, we
proposed reweighted atomic-norm minimization (RAM) for achiev-
ing high resolution compared to the currently prominent atomic nor-
m minimization (ANM) and validated its performance via numerical
simulations.
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