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ABSTRACT

Acquisition of physical fields, such as temperature along a
path, using a distributed array of sensors (samples) is of in-
terest. For smooth spatial fields, in a Nyquist style sampling
setup, the aliasing error is determined by the (spatial) spectral
profile of a field. Physical fields and their spectral proper-
ties evolve with time. In this work, the spectral evolution of
spatio-temporal fields is analyzed, where the field is given by
physical law comprising of a constant coefficient linear par-
tial differential equation. A procedure to examine whether
field’s spatial spectral profile will become worse with time,
from aliasing point of view, is developed. The procedure is
exemplified using a second-order PDE in this work. The anal-
ysis is extended to include simple point source terms. Tech-
niques such as the Fourier transform, the unilateral Laplace
transform, and root-locus plot from control theory are utilized
in this work.

Index Terms— signal sampling, signal reconstruction,
geophysical signal processing, Fourier transforms

1. INTRODUCTION

Remote sensing (acquisition) of physical fields, such as
temperature or pollution level, using a distributed array of
precision-limited sensors is of interest [1]. Many physical
phenomenons result in smooth fields due to underlying laws
of physics (for example, temperature profile is “smooth”
due to thermal exchange). Under smoothness conditions, a
Nyquist style sampling approach—where a large bandwidth
approximation of physical field is acquired—is natural. Phys-
ical fields cannot be filtered in the spatial dimension with a
fixed array of sensors, where sampling fundamentally pre-
cedes filtering. In the Nyquist style sampling approach, it
has been shown that the field approximation error depends on
the (spatial domain) spectral decay of the physical field both
in single and multidimensional setting [2, 3]. Specifically
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if f(x) is a one-dimensional field with f̃(ω) as its Fourier
spectrum and W is the reconstruction bandwidth, then

Aliasing(f,W ) =

∫
|ω|>W

|f̃(ω)|dω (1){eq:aliasingerror}

is the aliasing error term due to nonbandlimitedness of the
field [2, 3, 4]. The class of signals which can be sampled and
reconstructed with a bounded aliasing error is fairly rich and
includes all signals that have exponential and polynomial de-
cay in their spectra. This aliasing error term while sampling a
field is due to absence of an anti-aliasing prefilter. These re-
sults are valid for a single time-snapshot of the physical field.

On the other hand, a spatial field will evolve with time
due to governing laws of physics. Acquisition of spatial
fields while taking their laws of physics in account has been
discussed in the literature [5, 6]. The evolution of many
spatio-temporal fields can be modelled using partial differen-
tial equations. The Fourier spectrum of the spatial field and
hence the spectral decay of spatio-temporal fields, in general,
evolves with time.

In this work, we will investigate the following question
at large: whether the aliasing error term in (1) increases with
time when a physical field evolves according to a PDE based
spatio-temporal evolution law? If not, then it means that a
target reconstruction bandwidth (and associated Nyquist sam-
pling rate or density) at time zero will be sufficient to sample
the field at any time in the future.

Main contributions: For spatio-temporal fields evolving
according to a constant-coefficient linear partial differential
equation (PDE), we establish a procedure to examine whether
their spectral decay will become worse with time for vari-
ous (spatial) frequencies. We exemplify our procedure with
a second-order PDE in this work. We extend our analysis
to include simple point source terms as well. Our analysis
technique uses the Fourier transform, the unilateral Laplace
transform, and Agashe’s algorithm for examination of roots
of a complex-coefficient polynomial [7, 8].

Notation: The scalar variable x will be used for space
and t for time. Correspondingly, ω will be used for spatial
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(angular) frequency. The variable s will represent a point in
the complex plane. The spatio-temporal field will be denoted
by u(x, t), and its (spatial) Fourier transform will be denoted
by ũ(ω, t). The unilateral Laplace transform of ũ(ω, t), with
respect to time, will be denoted by Ũ(ω, s). And,

√
−1 will

be denoted by j.
Organization: Sec. 2 presents the assumptions made on

the evolution of spatio-temporal field. Sec. 3 consists of the
main result of this work. In Sec. 3.1, Fourier and Laplace
transforms are used to convert a PDE evolution into a rational
transfer function. In Sec. 3.2, the time and frequency based
evolution of poles of the rational transfer function is studied.
In Sec. 3.3, point source is added to the existing analysis. Fi-
nally, conclusions are presented in Sec. 4.

2. ASSUMPTIONS AND SYSTEM MODEL
{

Let u(x, t) be a spatially one-dimensional and temporally
evolving physical field of interest. Such field will model
a time-dependent isotropic (radially symmetric) physical
field or a time-dependent field in one dimension. It will be
assumed that the evolution of u(x, t) is governed by a par-
tial differential equation (PDE), which models the laws of
physics. For example, the heat equation will model the evolu-
tion of a spatial temperature field with time [9]. Throughout
the paper, the spatial Fourier transform of the field u(x, t)

ũ(ω, t) :=

∫
x∈R

u(x, t) exp(−jωx)dx

will be used. It is assumed that u(x, t) for each fixed time has
finite energy for the Fourier transform ũ(ω, t) to exist [10].

It will be assumed that u(x, t) is sufficiently smooth to
have a decaying (spatial) Fourier spectrum. This will enable
Nyquist sampling and associated approximate reconstruction
meaningful in the presence of aliasing [2]. Decaying Fourier
spectrum condition requires that

∫
ω∈R |ω||ũ(ω, t)|dω is finite

for every t ∈ R [2]. This condition ensures that u(x, t), for
each t ∈ R, can be acquired by Nyquist-style sampling with
aliasing error that diminishes with (spatial) sampling rate [2].

The spatial field’s (spatio-temporal) evolution will be
modeled by a second-order constant coefficient PDE. Such
PDEs include the heat-equation or the wave-equation [9]
from physics. The general form of this equation is given by

a2
∂2u(x, t)

∂t2
+ a1

∂u(x, t)

∂t
+ a0u(x, t)

= b1
∂u(x, t)

∂x
+ b2

∂2u(x, t)

∂x2
, (2){

where a2, a1, a0 and b2, b1 are real-valued constants. It will
be assumed that a2 6= 0. For example, the wave equation has
a2 = 1, a1 = 0, a0 = 0 and b2 > 0, b1 = 0. With initial
conditions u(x, 0) = u0(x) and ∂u(x, 0)/∂t = u1(x), the
solution u(x, t) is unique for all x ∈ R and t > 0 [9].

As mentioned in Sec. 1, the main result of this work will
focus on the eventual spectral decay in ũ(ω, t) for each t > 0.
It is of interest to show that the spectral decay in ũ(ω, t) is (up
to a proportionality constant) at least as fast as the spectral de-
cay in ũ0(x) and ũ1(x). We will show that there are necessary
and sufficient conditions on a2, a1, a0 and b2, b1 for this result
to hold.

3. FIELDS GIVEN BY SECOND ORDER PDE
}

The main contribution of this work is presented in this sec-
tion. The constant coefficient second order PDE will be ana-
lyzed. Conditions will be derived on its coefficients and ini-
tial conditions on the field, which ensure that the temporally
evolving field has decaying spatial spectrum. Consider the
PDE in (2) with the initial conditions u(x, 0) = u0(x) and
∂u(x, 0)/∂t = u1(x).

3.1. Analysis using the Fourier and Laplace transforms
}

The temporal evolution of the spatial spectrum of the field is
captured in the Fourier transform domain. A spatial Fourier
transform in (2) results in

a2
∂2ũ(ω, t)

∂t2
+ a1

∂ũ(ω, t)

∂t
+

(a0 − jb1ω + b2ω
2)ũ(ω, t) = 0, (3) }

with transform domain initial conditions ũ(ω, 0) = ũ0(ω)
and ∂ũ(ω, 0)/∂t = ũ1(ω). The temporal evolution of ũ(ω, t)
will be analyzed by using the unilateral Laplace transform in
(3) [7]. This results in

a2s
2Ũ(ω, s) + a1sŨ(ω, s) + (a0 − jb1ω + b2ω

2)×
Ũ(ω, s)− (sũ0(ω) + ũ1(ω))a2 − a1ũ0(ω) = 0

for each ω ∈ R. The above equation can be rearranged into
the following more familiar form

Ũ(ω, s) =
a2ũ0(ω)s+ a2ũ1(ω) + a1ũ0(ω)

a2s2 + a1s+ a0 + b2ω2 − jb1ω
. (4) }

Without loss of generality, let a2 = 1. If a2 6= 1, the nu-
merator and denominator in the right-hand side of (4) can be
divided by a2. The solution ũ(ω, t) is given by the (causal)
inverse Laplace transform of Ũ(ω, s). The inverse Laplace
transform and associated solution for t ≥ 0 is obtained by the
partial fraction expansion (in s) and is given by [7]

ũ(ω, t) = c1(ω)e
r1(ω)t + c2(ω)e

r2(ω)t, (5) }

where r1(ω) and r2(ω) are the roots of s2+a1s+a0+b2ω2−
jb1ω = 0 and c1(ω) and c2(ω) are given by[

c1(ω)
c2(ω)

]
=

[
1 1

r1(ω) r2(ω)

]−1 [
ũ0(ω)
ũ1(ω)

]
. (6) }
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Observe that ũ(ω, t) in (5) can become large as t increases in
two ways: (i) if r1(ω) or r2(ω) have positive real parts; or,
(ii) if r1(ω) and r2(ω) are “close” but not equal. Both these
issues are addressed in the next section. If ũ(ω, t) becomes
unbounded, then the spectral aliasing term corresponding to
(1) becomes unbounded, i.e.,

∫
|ω|>W

|ũ(ω, t)|dω will become
unbounded as t increases. In this case, Nyquist style sampling
may not be useful to acquire the field. For Nyquist style sam-
pling setup to be useful, the real part of the roots r1(ω) and
r2(ω) should be negative for all ω ∈ R. At this point, it
should be noted that the presence of r1(ω) or r2(ω) or both
only depends on the coefficients a2, a1, a0 and b2, b1 which
govern the physical law or the PDE.

Definition 3.1 The spectral evolution of the PDE in (3) will
be called as stable if both r1(ω) and r2(ω) in (5) lie in the
left-half plane, i.e., Re[r1(ω)] < 0 and Re[r2(ω)] < 0 for all
ω ∈ R.

Next we will establish the conditions on a2, a1, a0 and
b2, b1 such that the spectral evolution in (3) is stable. Had the
denominator polynomial in s in (4) consisted only of real-
valued coefficients, Routh-Hurwitz algorithm could be uti-
lized to find the conditions on a2, a1, a0 and b2, b1 such that
spectral evolution in (3) is stable. For rational Laplace trans-
fer functions with complex-valued coefficients, an extension
of Routh-Hurwitz algorithm is available. It will be referred to
as Agashe’s algorithm in what follows [8].

Once it is ensured that r1(ω) and r2(ω) are in the left-
half plane, it will be shown that r1(ω) 6= r2(ω) for ω 6= 0.
This will ensure that the matrix in (6) is invertible with a finite
condition number.

3.2. Conditions on PDE for stable spectral evolution

To ensure that r1(ω) and r2(ω) in (5) lie in the left-half plane,
Agashe’s algorithm will be used on the denominator polyno-
mialD(s) = s2+a1s+a0+b2ω

2−jb1ω. Based on Agashe’s
algorithm, the quasi-real and quasi-imaginary parts are

Dr(s) = s2 + a0 + b2ω
2 and Di(s) = a1s− jb1ω.

Observe that D(s) = Dr(s) + Di(s) and D∗(s) = Di(s) +
Rr(s) where Rr(s) is the remainder obtained after dividing
Dr(s) by Di(s). For the denominator D(s), the remainder
is given by Rr(s) = a0 +

(
b2 − b21

a2
1

)
ω2. For both the roots

r1(ω) and r2(ω) to lie in the left-half plane, Agashe’s algo-
rithm requires that

1

a1
> 0 and

a1

a0 +
(
b2 − b21

a2
1

)
ω2

> 0. (7)

For (7) to hold for all values of ω, it is required that

a1 > 0, a0 > 0, and b2 >
(
b21
a21

)
. (8)

Once a second order PDE is available, which explains the evo-
lution of a spatio-temporal field, the conditions in (8) can be
checked to ensure stability. The condition in (8) is the culmi-
nation of our first claim.

Next, to ensure that matrix inverse in the right-hand side
of (6) is well defined (with a finite condition number), it has
to be argued that the trajectories of r1(ω) and r2(ω) do not
intersect as ω is varied. Let

r1(ω) = α1(ω) + jβ1(ω) and r2(ω) = α2(ω) + jβ2(ω).

Since (s− r1(ω))(s− r2(ω)) = D(s), therefore,

[α1(ω) + α2(ω)] + j[β1(ω) + β2(ω)] = −a1

and

[α1(ω)α2(ω)− β1(ω)β2(ω)]+
j[α1(ω)β2(ω) + α2(ω)β1(ω)] = a0 + b2ω

2 − jb1ω.

Further simplification of the above equations lead to

α1(ω) + α2(ω) = −a1, (9) }
β1(ω) + β2(ω) = 0, (10) }

α1(ω)α2(ω)− β1(ω)β2(ω) = a0 + b2ω
2, (11) }

α1(ω)β2(ω) + α2(ω)β1(ω) = −ωb1. (12) }

Since r1(ω) and r2(ω) are in the left-hand plane, so α1(ω) <
0 and α2(ω) < 0. Substitution from (9) and (10) in (11) and
(12) results in

β1(ω)
2 − a1α1(ω)− α1(ω)

2 = a0 + b2ω
2, (13) }

β1(ω)(−a1 − 2α1(ω)) = −ωb1. (14) }

It will be shown next that β1(ω) will move away from 0 and
consequently away from β2(ω) (see (10)) as ω increases.
Since a0 > 0 and b2 > 0 (see (8)), the right hand side of (11)
is always positive and increases with ω. Therefore at least one
among β1(ω)2 and −a1α1(ω)− α1(ω)

2 has to increase with
ω. If β1(ω)2 increases it implies that β1(ω) moves away from
0 and consequently away from −β1(ω) = β2(ω). In the case
that β1(ω) does not increase, −a1α1(ω) − α1(ω)

2 will have
to increase which will happen only if α1(ω) moves towards
−a1

2 . But this will cause the magnitude of −a1 − 2α1(ω) to
decrease in (14) which will force the magnitude of β1(ω) to
increase since the magnitude of the right hand side of (14)
increases as ω increases. This again implies that β1(ω) moves
away from 0 and therefore also away from β2(ω). Since the
imaginary parts of the two roots, r1(ω) and r2(ω) move away
from each other as ω increases it follows that the two roots
cannot come arbitrarily close to each other, thus preventing
the condition number of the matrix in (6) from becoming very
large. There are 3 cases for the position of roots at ω = 0:

Case 1: Roots coincide at ω = 0. Therefore, r1(0) =
r2(0) = −a1/2.
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Fig. 1.
fig:rootlocus
The evolution of r1(ω) and r2(ω), which characterize the spectral decay of ũ(ω, t) in (5), is plotted for various values

of coefficients in second-order linear PDE. In all the plots, the direction of arrow indicates the movement of r1(ω) and r2(ω)
as ω increases. Observe that the roots separate away as ω increases. So, the condition number of matrix in right-hand side of
(6) is finite. Case 1: a1 = a0 = 4, b1 = −5, b2 = 100. Case 2: a1 = 4, a0 = 3, b1 = −5, b2 = 100. Case 3: a1 = 3, a0 = 6,
b1 = −5, b2 = 100.

Case 2: Roots are real but distinct.
Case 3: Roots are complex conjugates of each other.
A sample trajectory for each of these cases is shown in

Fig. 1.
Higher order PDEs: They can be treated similarly by

applying Agashe’s algorithm on the corresponding higher de-
gree polynomial and imposing conditions on the coefficients
such that all the roots of the polynomial are in the left-half
plane. We will then have to also look at the trajectory of the
roots as ω varies. The analysis gets increasingly complex as
the degree of the PDE increases.

3.3. Addition of a point source term in the PDE
{

In what follows we will include a source term s(x, t) in the
right-hand side of the second order PDE in (2). In this case,
the counterpart of (4) is

Ũps(ω, s) =
a2ũ0(ω)s+ a2ũ1(ω) + a1ũ0(ω) + S̃(ω, s)

a2s2 + a1s+ a0 + b2ω2 − jb1ω
,

(15){

where S̃(ω, s) is the unilateral Laplace transform of s̃(ω, t)
which in turn is the (spatial) Fourier transform of s(x, t), the
source term. For further analysis, we will restrict the treat-
ment to a simple point source where s(x, t) = δ(x)δ(t − t0)
and S̃(ω, s) = e−t0s. Physically this point source represents
an impulse of area one at origin (in space) and time t0. For
this point source, (15) reduces to

Ũps(ω, s) =
a2ũ0(ω)s+ a2ũ1(ω) + a1ũ0(ω) + e−t0s

a2s2 + a1s+ a0 + b2ω2 − jb1ω
.

Let Ũps(ω, s) = Ũ1(ω, s) + Ũ2(ω, s) where

Ũ1(ω, s) =
a2ũ0(ω)s+ a2ũ1(ω) + a1ũ0(ω)

a2s2 + a1s+ a0 + b2ω2 − jb1ω
,

and Ũ2(ω, s) =
e−t0s

a2s2 + a1s+ a0 + b2ω2 − jb1ω
.

Upon Laplace transform inversion ũps(ω, t) = ũ1(ω, t) +
ũ2(ω, t) is obtained where

ũ1(ω, t) = c1(ω)e
r1(ω)t + c2(ω)e

r2(ω)t, and

ũ2(ω, t) = u(t− t0)
(
k(ω)er1(ω)(t−t0) − k(ω)er2(ω)(t−t0)

)
where c1(ω) and c2(ω) are as given before in (6) {1m}and k(ω) =

1
r1(ω)−r2(ω) .

If the constraints on the coefficients satisfy (7) {1m}, then the
spectral evolution of the field is stable. As a result, the spec-
tral decay properties of the field in the presence of a point
source only depends on the spectral decay properties of the
initial conditions ũ0(ω) and ũ1(ω) (as in the case without a
point source). This argument can be easily extended to multi-
ple point sources.

4. CONCLUSIONS

The spectral evolution of spatio-temporal fields was analyzed,
where the spectral evolution of the field was given by a con-
stant coefficient linear PDE. It was shown that the spectral
decay analysis of a field governed by a constant coefficient
linear PDE naturally reduces into whether roots of a complex-
coefficient polynomial lie in the left-half plane or not. This
procedure was carried out for a second-order constant coeffi-
cient linear PDE. The analysis was extended to include point
source terms.
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