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Abstract – In this paper we investigate the design of the mea-
surement matrix for applying Compressed Sensing (CS) to the
problem of Direction Of Arrival (DOA) estimation with antenna
arrays. So far, it has been suggested to choose the coefficients
randomly since this choice satisfies the restricted isometry prop-
erty (RIP) with a high probability. We demonstrate that this
choice may be sub-optimal since it can result in an effective ar-
ray with significant sidelobes and blind spots. The sidelobes are
especially problematic when we use correlation-based greedy al-
gorithms for the sparse recovery stage as they can lead to de-
tecting spurious peaks. To address the problem, we introduce a
design methodology for constructing a measurement matrix that
mitigates these unwanted effects to achieve a better DOA estima-
tion performance. Numerical results demonstrate the usefulness
of our design.

Keywords: Compressive Sensing, DOA Estimation, Measurement
Design

1. INTRODUCTION

Direction of arrival (DOA) estimation has been an active field of
research for many decades [1]. Estimated DOAs are used in vari-
ous applications like localization of the transmitting sources, beam-
forming to enhance the desired signal and reduce interference, chan-
nel modeling, tracking and surveillance in radar, and many others.

Recently, the application of sparse recovery, which has become
popular due to its usefulness in Compressed Sensing (CS) [2, 3, 4],
to direction of arrival (DOA) estimation has been considered for ap-
plications like localization of the transmitting sources [5], channel
modeling [6], tracking and surveillance in radar [7], and many oth-
ers. It was highlighted in [8] that, if the field is modeled as a super-
position of a few planar wave-fronts, the DOA estimation problem
can be expressed as a sparse recovery problem. The main focus in
[8] is to use the sparse recovery algorithms that have become pop-
ular in the CS field for the DOA estimation problem as an alter-
native for existing parameter estimation algorithms. Many powerful
sparsity-based DOA estimation algorithms have been proposed in re-
cent years [9, 10, 11, 12]. It has been claimed that the sparsity-based
DOA estimation techniques can provide some advantages over con-
ventional parameter estimation techniques, such as, being insensitive
to source correlation, allowing arbitrary array geometries, working
with a single snapshot, and providing guarantees for obtaining a cor-
rect global solution via convex relaxation [13].

It has recently been proposed to apply CS to the acquisition of
the RF signals that are used for DOA estimation [14, 15]. In par-
ticular, the CS paradigm can be implemented in the spatial domain
by employing M passive antenna elements that are combined into a
smaller number of m < M channels using an analog combining net-

work. Since only m channels need to be sampled and digitized, the
hardware complexity remains comparably low while allowing us to
cover a larger aperture (and thus be more selective) than a traditional,
Nyquist (λ/2) spaced m-channel antenna array. Based on the fact
that the underlying signal is sparse in the angular domain, CS the-
ory suggests that it can be recovered from m < M measurements,
provided that the measurement kernel is appropriately chosen.

In this paper we investigate the effect of the measurement ker-
nel on the DOA estimation performance. In particular, we show that
considering a random measurement kernel may lead to an effective
array with unwanted properties such as blind spots or very high side
lobes. The latter are particularly problematic for correlation-based
sparse recovery algorithms such as Orthogonal Matching Pursuit
(OMP) [16] as they may lead to the detection of spurious peaks. We
propose a design approach for the measurement kernel that can be
optimized numerically and allows closed-form solutions in certain
special cases. Based on the optimized measurement matrices, we
investigate the achievable DOA estimation accuracy numerically.

2. DATA MODEL

Consider K transmitting narrowband sources in the far-field of an
M -element antenna array. The output signal at the M antenna ports
can be expressed as

x(t) =

K∑
k=1

a(θk) · sk(t) +w(t), (1)

where a(θ) ∈ CM×1 represents the array manifold as a function
of the azimuth angle, θk is the azimuth angle of arrival of the k-
th source, sk(t) denotes the transmit signal of the k-th source, and
w(t) represents the additive measurement noise. For simplicity, we
consider an M -element half-wavelength spaced uniform linear array
(ULA) such that a(θ) = [1, eȷµ, . . . , eȷ(M−1)µ]T for µ = π ·cos(θ).
In order to be able to resolve targets with closely spaced angles, a
large aperture is required. However, since the spatial sampling the-
orem allows sensors to be spaced no more than half a wavelength
apart, this translates into a large number of sensor elements M . Sam-
pling a large number of channels is costly, since it requires many RF
chains with costly components such as amplifiers, filters, and A/D
converters.

It has therefore been suggested to apply the Compressed Sensing
(CS) framework in order to reduce the number of channels that have
to be sampled while maintaining a large aperture [15]. To see that
the underlying model is sparse, we rewrite (1) into

x(t) = A · s(t) +w(t), (2)
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where A =
[
a(θ

(G)
1 ) . . . a(θ

(G)
N )

]
∈ CM×N is the array man-

ifold sampled on a predefined N -point sampling grid and s(t) ∈
CN×1 is K-sparse, provided that the true angles of arrival θk are on
the sampling grid. If no prior knowledge on the true directions of
arrival is available, it is advisable to choose a sampling grid that is
uniform in the sense that the correlation between adjacent columns
is translation-invariant since this minimizes the self-coherence of the
dictionary for a given N . For a ULA, this is achieved by sam-
pling the direction cosines uniformly, i.e., µ(G)

n = π cos(θ
(G)
n ) =

(n − 1) · ∆ for n = 1, 2, . . . , N where ∆ = 2π/N (see [8] for
details). Note that in the ULA case this implies that A is row-
orthogonal, i.e., A ·AH = N · IM .

Based on (2), CS theory states that the signal can be recovered
from m < M linear measurements y(t) = Φ · x(t) ∈ Cm×1,
provided that the measurement kernel Φ ∈ Cm×M is appropriately
chosen. Inserting (1), we have

y(t) = Φ · x(t) =
K∑

k=1

ã(θk) · sk(t) + w̃(t), (3)

where w̃(t) = Φ ·w(t) and ã(θ) = Φ · a(θ). Equation (3) shows
that the application of CS has transformed the M -element array into
an m-port array with a beam pattern given by ã(θ).

In [15] and its follow-up papers, it has been suggested to con-
sider measurement kernels Φ drawn from random distributions such
as Gaussian or Bernoulli distributions. Such a choice is popular due
to its simplicity and certain mathematical guarantees on the uniform
support recovery, i.e., recovering arbitrary subsets of K non-zero
entries in s(t). As we show below, this choice may not be suitable
for the DOA estimation task since it may result in the effective ar-
ray having certain blind spots (i.e., angles from which the energy is
severely attenuated) or high sidelobes (which could be mistaken for
spurious peaks). A design of Φ that avoids these effects is introduced
in the next section.

3. MEASUREMENT DESIGN

In this section we discuss the design of the measurement matrix Φ.
Since the CS-array is built in hardware, we aim at a static design that
results in an effective array having certain desired properties, e.g.,
uniform sensitivity and low cross-correlation. We base our design
on the effective array manifold ã(θ) that is introduced in Section 2
and directly depends on Φ via ã(θ) = Φ · a(θ) . An ideal generic
array for direction finding would satisfy the conditions

ã(θ1)
H · ã(θ2) =

{
const θ1 = θ2

0 θ1 ̸= θ2
, (4)

where the first condition guarantees that the array gain is constant
for all angles (to make the array uniformly sensitive) and the second
condition asks for good cross-correlation properties to tell signals
from different directions apart. Note that this is an example for a
completely generic direction finder. For particular applications, the
target may be a different one, i.e., constraining only a certain sector
of angles or allowing certain values for the residual cross-correlation.
We represent the target function as T (θ1, θ2), where T (θ1, θ2) =
const · δ(θ1 − θ2) represents the example (4).

Due to the finite aperture of the M -element array, the target in
(4) can only be achieved approximately. This allows us to define a

criterion for optimizing Φ according to the cost function

e(Φ, θ1, θ2) =
∣∣∣ã(θ1)H · ã(θ2)− T (θ1, θ2)

∣∣∣ (5)

=
∣∣∣a(θ1)H ·ΦH ·Φ · a(θ2)− T (θ1, θ2)

∣∣∣ .
We can eliminate the continuous variables θ1 and θ2 by consider-
ing the N -point sampling grid θ

(G)
n , n = 1, 2, . . . , N used for CS

and define the N × N matrices E and T according to E(i,j) =

e(Φ, θ
(G)
i , θ

(G)
j ) and T(i,j) = T (θ

(G)
i , θ

(G)
j ). Inserting (5) we ob-

tain

E =
∣∣∣AH ·ΦH ·Φ ·A− T

∣∣∣ . (6)

Based on (6) the quality of Φ can be assessed based on a suitable
norm of E. As a first step, let us consider the Frobenius norm, i.e.,
we optimize Φ according to

Φopt = argmin
Φ

∥E∥2F . (7)

The optimization problem in (7) admits a closed-form solution as
shown in the following theorem.

Theorem 1. Let S = A ·T ·AH and let Sm be a rank-m-truncated
version of S obtained by setting its N − m smallest eigenvalues to
zero. Then the set of optimal solutions to (7) is given by the set of
matrices Φ that satisfy ΦHΦ = Sm.

Proof: cf. Appendix A.
In other words, Theorem 1 states that we can find an optimal Φ

by computing a square-root factor of the best rank-m approximation
of S. Moreover, the following corollary can be found from Theo-
rem 1:

Corollary 1. Under the conditions of Theorem 1 any matrix Φ is
optimal in terms of the “ideal” target from (4) if and only if the rows
of Φ have equal norm and are mutually orthogonal.

Proof. The sampled version of (4) is given by a scaled identity ma-
trix, i.e., T = C · IN . Since A is row-orthogonal it follows that
S = A · T · AH = C · N · IM . As all eigenvalues of S are
equal to C ·N , its eigenvalue decomposition can be written as S =
U · (C · N · IM ) · UH, where U ∈ CM×M is an arbitrary uni-
tary matrix. Truncating the M −m “smallest” eigenvalues, we ob-
tain Sm = C · N · Um · UH

m, where Um ∈ CM×m contains the
first m columns of U . Invoking Theorem 1, we have ΦH

optΦopt =

C ·N ·Um ·UH
m and therefore Φopt is a scaled version of UH

m, which
proves the claim.

Corollary 1 agrees with the intuition that the measurements
(i.e., the rows of Φ) should be chosen such that they are orthogo-
nal in order to make every observation as informative as possible.
In addition, the corollary shows that this choice also minimizes∥∥ΦHΦ− C ·N · IM

∥∥
F

which contains the correlations between
all pairs of columns in Φ as well as the deviation of the columns’
norms (therefore, in a sense, this choice minimizes the “average”
mutual correlation). On the other hand, this also demonstrates that
the optimization in (7) is not sufficiently selective since all row-
orthogonal matrices achieve the same minimum of the cost function.

The cost function (7) assigns an equal weight to the error for
all pairs of grid points θ(G)

1 , θ
(G)
2 , i.e., it tries to maintain a constant

main lobe with the same weight as it tries to minimize sidelobes
everywhere. In practice it is often desirable to have more control
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Fig. 1. Spatial correlation function φ(µ1, µ1+∆µ) for µ1 = π. We
compare the M = 12 element ULA with an 8 × 12 CS array. To
show the variability of choosing Φ randomly, we depict the average
correlation (solid line), the 5-th and 95-th percentile (shaded area)
and one example realization (dash-dotted line).

over the shape of the beam pattern, e.g., trading main lobe ripple
against sidelobe levels or allowing for a transition region between
the main lobes and side lobes that is not constrained. There are
many ways such constraints could be incorporated, e.g., maximum
constraints on the magnitude of cross-correlation in some region and
interval constraints on the autocorrelation inside the main lobe. For
numerical tractability, we follow a simpler approach by introducing
a weighting matrix W ∈ RN×N into (7). The modified optimiza-
tion problem is given by

Φopt = argmin
Φ

∥E ⊙W ∥2F , (8)

where ⊙ represents the Schur (elementwise) product. The weight-
ing matrix allows to put more or less weight on the main diagonal
(controlling how strictly the constant main lobe power shall be en-
forced), certain off-diagonal regions (controlling how strongly side-
lobes in these regions should be suppressed), or even placing zeros
for regions that remain arbitrary (such as transition regions between
the main lobe and the side lobes). Thereby, more flexibility is gained
and the solution can be tuned to more specific requirements.

The drawback of (8) is that it does not admit a closed-form solu-
tion in general. However, it can be solved by numerical optimization
routines that are available in modern technical computing languages.
Note that it is our goal to derive a generic design of Φ which is com-
puted only once (off-line). Therefore, the computational efficiency
of finding the solution to (8) is not a major concern.

4. NUMERICAL RESULTS

In this section we present some numerical results to demonstrate the
advantage of using a measurement matrix Φ that is optimized ac-
cording to our proposed methodology as compared to choosing Φ
randomly. To this end, we consider a M = 12 element ULA that is
reduced to m = 8 channels via an 8×12 combining matrix Φ. This
matrix is chosen according to [Φ](m,n) = eȷφm,n , where φm,n are
the optimization variables in the proposed approach and drawn from
a uniform distribution for the random approach.
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Fig. 2. Mean square estimation error for randomly drawn Φ, using
OMP for the sparse recovery step. We consider two sources posi-
tioned at µ1,2 = (n0 ± d/2) · ∆. The MSE is averaged over all
values n0 ∈ [1, N ] and a histogram over this average MSE is esti-
mated for three values of the source distance d = 2, 4, 8. MSE and
source distance are shown in units of the grid spacing ∆ to facili-
tate their comparison. The average MSE of our optimized design is
indicated with the dashed lines.

To find an optimized design Φopt we solve the weighted op-
timization problem (8) via MATLAB’s numerical optimization fea-
tures. Since run-time is not a concern for an off-line design, in order
to avoid local minima, we run fminconwith 100 random initializa-
tions and pick the solution with the smallest value of the cost func-
tion. As a target we set T = AH ·A which is the correlation function
we would achieve with an M -ULA. The weighting matrix is chosen
according to [W ](n1,n2) = ρ|n1−n2| where ρ ∈ (0, 1] is a parame-
ter that controls the decay of the weights. Essentially, smaller values
of ρ put significantly more weight at the main lobe and its quick de-
cay and less weight on the side-lobes that are far from the main lobe.
The limiting value ρ = 1 represents the unweighted case.

Figure 1 demonstrates the normalized spatial correlation func-
tion (SCF) defined as

φ(µ1, µ1 +∆µ) =
ã(µ1)

Hã(µ1 +∆µ)

ã(µ1)Hã(µ1)
(9)

for µ1 = π. For reference, the black line indicates the 12-ULA
whereas the blue line represents the result of the optimization for
ρ = 0.95. We observe that the optimized design comes close to the
M -ULA except for slightly higher sidelobes. Figure 1 also shows
the SCF that are obtained when we draw Φ randomly without any
optimization. We depict the average SCF (solid line), the 5-th and
the 95-th percentile (shaded area) and one example realization (dash-
dotted line). As evident from the figure, randomly chosen measure-
ment matrices lead to significantly higher spatial correlations. In
particular, every realization shows sidelobes that are sometimes even
higher than the main lobe. Note that these lead to erroneous deci-
sions in greedy algorithms such as OMP. What is not shown here is
that also ã(µ1)

Hã(µ1) varies significantly over µ1 with some very
small values that correspond to regions where the array is signifi-
cantly less sensitive (“blind spots”).

Figure 2 demonstrates the DOA estimation performance if we
use the OMP algorithm for the sparse recovery stage. We consider a
noise-free scenario with two sources that are located on the N = 48
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Fig. 3. The same scenario as shown in Figure 2 but this time includ-
ing noise at an SNR of 10 dB.
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Fig. 4. The same scenario as shown in Figure 2, this time using Basis
Pursuit (BP) for the recovery stage. Our proposed design achieves
an average MSE of zero for d = 2, 4, and 8.

point uniform sampling grid, i.e., µ1,2 = (n0 ± d/2) · ∆ where
n0 ∈ [1, N ] and d is the inter-source spacing in grid points. For
each value of d, the mean square error MSE = 1

2

∑2
k=1(µk − µ̂k)

2

is averaged over all values of n0. An estimate of the Complemen-
tary Cumulative Distribution Function (CCDF) of this average MSE
obtained from 1000 realizations of Φ is shown. As evident from the
figure, the average MSE exceeds the source spacing d with a prob-
ability of 95 % for d = 2, 80 % for d = 4, and 30 % for d = 8.
For the same scenario, our optimized design (choosing w = 0.7)
achieves an MSE very close to zero (shown with the dashed lines),
i.e., 0.72∆ for d = 2, 0.13∆ for d = 4, and 0.03∆ for d = 8.

To investigate the effect of additive noise, we have repeated the
experiment from Figure 2 with additive noise. In particular, we have
drawn the noise vector w (cf. (2)) from a zero mean circularly sym-
metric complex Gaussian distribution with a variance of 0.1, which
corresponds to an SNR of 10 dB. The result is shown in Figure 3.
Once more, the optimized design achieves a significantly lower aver-
age MSE compared to the randomly chosen measurement matrices.

Though the main concern for optimizing Φ has been put on
correlation-based recovery algorithms such as the OMP, we have

tested it on the Basis Pursuit (BP) algorithm [17] as well and found
that it also offers some advantages there. To this end, we have re-
peated the previous simulation with the same parameters, using BP
instead of OMP for the recovery stage. The result is shown in Fig-
ure 4. The figure shows the CCDF of the average MSE over 1000
random realizations of Φ. Our proposed design is not shown since it
achieves an exact reconstruction result (MSE=0) for all values of d.
As expected, BP is more reliable and less sensitive to sidelobes com-
pared to OMP. In fact, for each value of d there is a non-zero chance
to draw a matrix Φ randomly that achieves an exact reconstruction
as well. However, these “lucky” choices are not very stable in the
sense that changing the grid size N or the source spacing d results
in estimation errors to occur.

5. CONCLUSIONS

In this paper, we have discussed the design of the measurement ma-
trix for applying Compressive Sensing (CS) to the Direction Of Ar-
rival (DOA) estimation problem. We have demonstrated that choos-
ing it randomly may lead to undesirable effects in the effective CS-
array such as very high sidelobes. These are particularly problematic
for correlation-based sparse recovery algorithms such as the Orthog-
onal Matching Pursuit since they may lead to the detection of spuri-
ous peaks. We have introduced a design methodology for the mea-
surement matrix that can avoid these issues by optimizing the result-
ing effective beam pattern. Numerical results demonstrate that the
optimized design leads to more favorable spatial correlation func-
tions and a significantly improved DOA estimation performance.

A. PROOF OF THEOREM 1

To prove the theorem we use the fact that for a unitary matrix
U and an arbitrary square matrix X we have ∥X ·U∥F =

∥U ·X∥F = ∥X∥F . Since A satisfies A · AH = N · IM we
can find a matrix Ā ∈ C(M−N)×N such that V

.
= 1/

√
N ·

[AT, ĀT]T ∈ CN×N is a unitary matrix. Therefore, we have
V ·AH =

[√
N · IM ,0M×N−M

]T
. The cost function (7) can then

be rewritten as

∥E∥2F =
∥∥∥V ·E · V H

∥∥∥2

F

=

∥∥∥∥[√N · IM
0N−M×M

]
ΦH ·Φ

[√
N · IM ,0M×N−M

]
− V · T · V H

∥∥∥∥2

F

=

∥∥∥∥[N ·ΦH ·Φ 0M×N−M

0N−M×M 0N−M×N−M

]
−N ·

[
A
Ā

]
T
[
AH, ĀH

]∥∥∥∥2

F

=

∥∥∥∥N ·
[
ΦH ·Φ−A · T ·AH −A · T · ĀH

−Ā · T ·AH −Ā · T · ĀH

]∥∥∥∥2

F

= N2 ·
∥∥∥ΦH ·Φ− S

∥∥∥2

F
+ const, (10)

using the short-hand notation S = A·T ·AH. Equation (10) demon-
strates that the optimization problem is equivalent to finding the best
approximation of the matrix S by the matrix ΦH ·Φ. Since Φ is an
m×M matrix, the rank of the M×M matrix ΦH ·Φ is less than or
equal to m < M . Therefore, (10) represents a low-rank approxima-
tion problem. According to the Eckart-Young theorem, its optimal
solution is given by truncating the M − m smallest eigenvalues of
S.
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