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ABSTRACT
This paper considers the problem of non uniform sampling in
the case of finite energy functions and random processes, not
necessarily approaching to zero as time goes to infinity. The
proposed method allows to perform exact signal reconstruc-
tion, spectral estimation or linear filtering directly from the
non-uniform samples. The method can be applied to either
lowpass, or bandpass signals.

Index Terms— Periodic nonuniform sampling, Sampling
theory, Signal reconstruction, Spectral estimation, Nonuni-
form filtering

1. INTRODUCTION

The problem considered in this paper is the reconstruction
of a stationary random process sampled at non periodic but
known time instants, extending previous results concerning
non uniform sampling for finite energy functions. It is also
possible, without additional complexity, to derive in the same
time the Fourier Transform (and spectrum) of the signal and
have access to filtered versions of the process. Such a situa-
tion (non periodic and known time instants) arises in lots of
applications such as:

• Extra-solar planet detection with observation of a sinu-
soidal behavior of the radial velocity or the brilliance of
an observed star, due to its interaction with the planet
to be detected. Measurements are performed only when
the star is visible.

• Use of interferometers composed of a set of small size
mirrors. Manufacturing defects lead to non uniform
spatial distribution of the mirrors. Nevertheless, their
exact position can be measured with high accuracy and
can be assumed to be perfectly known.

Original contributions of this work are the following ones:

• Exact reconstruction formulas are derived.

• Ability to perform spectral estimation and linear digital
filtering directly from non uniform samples.

• This can be applied to any realization of a general-type
filtered random noise.

• Direct applicability to bandpass processes sampled
largely below Nyquist rate, provided the frequency
band is approximately known, without need of prior
spectral translation.

In the context of an irregular sampling when the sampling
instants are not regularly spaced but assumed to be known
without error, a lot of approximate reconstruction formulas
exist in the literature as polynomials or spline interpolation
methods (for example [1], [2], [3]). More recent methods in-
clude papers by Selva [4] and Eldar [5] for multiband signals
or Aldroubi (compressed sampling [6], data smoothing and
interpolation by cubic splines [7]) or Oppenheim [8] for sinc
reconstruction of bandpass signal using digital filtering. Exact
formulas are difficult to find in the literature even if conditions
ensuring that a band-limited signal can be reconstructed ex-
actly from infinite irregular sampling exist [9]. In this paper,
exact reconstruction formulas are derived. Section 2 presents
interpolation formulas (proofs of formulas are developed) and
simulations are carried out in Section 3, demonstrating the ac-
curacy of reconstruction. Section 4 concludes the paper.

2. RECONSTRUCTION FORMULAS

Let us consider the case of a real or complex stationary pro-
cesses Z = {Z (t) , t ∈ R} with power spectral density s (ω):

E [Z (t)Z∗ (t− τ)] =

∫ ∞
−∞

eiωτs (ω) dω. (1)

where E[.] stands for the mathematical expectation and the
superscript ∗ for the complex conjugate.

2.1. General derivations for bandpass process

The random process Z is assumed to be bandpass. Autocor-
relation function and power spectrum are derived after linear
coordinate changes leading to two dimensionless frequency
bands of length π

E [Z (t)Z∗ (t− τ)] =

∫ −α
−π−α

+

∫ π+α

α

s (ω) eiωtdω, α > 0.

(2)
The limit case α = 0 corresponds to a one-piece spectrum

around the origin (the process Z is then said to be baseband).
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The method developed here has similarities with the PNS2L
(Periodic Nonuniform Sampling of order 2L) [10], [11], [12],
with sampling instants chosen as in (3).

tmn = θm + 2nL, 0 < |m| ≤ L, n ∈ Z (3)

where Z is the set of positive and negative integers. The
main difference with previous papers on PNS2L is that only
observations (samples Z (θm)) are used in computations.
As in classical reconstruction theory (sinc-based formulas),
the truncation (n > 0) has less effect when L is large and
when the rate of the θm is smaller than 1 (the Landau rate):
limm→∞ θm/m = θ < 1.
Given a bandpass filter G1 (ω) seen as a regular function
defined on

[
α, α+ π

L

]
(0 elsewhere), its shifted version can

be written as

Gk (ω) =

{
G1

(
ω − (k − 1) πL

)
, k > 0

G1

(
−ω + (k + 1) πL

)
, k < 0.

(4)

Gk (ω) is shifted in intervals

∆k =

{ (
α+ (k − 1) πL , α+ k πL

)
, k > 0(

−α+ k πL ,−α+ (k + 1) πL
)
, k < 0.

(5)

Two processes Uk and Zk are defined as outputs of linear in-
variant filters (LIF) with input Z and complex gains I∆k

(ω)
andGk (ω). I∆k

is an ideal bandpass filter (indicator function
of the set ∆k).{

Uk (t) =
∫∞
−∞ gk (u)Z (t− u) du

Gk (ω) =
∫∞
−∞ gk (u) e−iωudu

(6)

Zk (t) =
∫∞
−∞ fk (u)Z (t− u) du

fk (u) =

{
ei(α+ kπ

L ) eiuπ/L−1
2iπu , k > 0

ei(−α+ kπ
L ) 1−eiuπ/L

2iπu , k < 0.

(7)

The last equality corresponds to the impulse response of an
ideal bandpass filter,

fk (u) =
1

2π

∫
∆k

eiωudω. (8)

We are looking for formulas giving Uk(t) and Zk(t) ex-
pressed as a function of the samples Z (θm + 2nL), so that
the process can be easily reconstructed

Z (t) =
∑

0<|k|≤l

Zk (t) . (9)

Developing the product Gk (ω) eiωt in Fourier series on ∆k

(interval of length π/L) leads to (10) and to (11), which are
valid ∀c ∈ R:

Gk (ω) eiωt =
∑
n∈Z akn (t) e2inLω, ω ∈ ∆k.

akn (t) = L
π

∫
∆k

Gk (ω) eiω(t−2nL)dω
(10)

Gk (ω) eiωt =
∑
n∈Z

akn (t− c) eiω(c+2nL), ω ∈ ∆k. (11)

(4) and (5) then lead to (12) and equivalently to (13).

akn (t) ={
L
π e

i(k−1)πt/L
∫

∆1
G1 (ω) eiω(t−2nL)dω, k > 0

L
π e

i(k+1)πt/L
∫

∆1
G1 (ω) e−iω(t−2nL)dω, k < 0.

(12)

akn (t) =

{
b+k (t) c+n (t) , k > 0
b−k (t) c−n (t) , k < 0

b+k (t) = eit(α+(k−1/2)π/L)

b−k (t) = eit(−α+(k+1/2)π/L)

c+n (t) =
(−1)nLe−2iαnL

π

∫ π/2L
−π/2LG1

(
ω + α+ π

2L

)
eiω(t−2nL)dω

c−n (t) =
(−1)nLe2iαnL

π

∫ π/2L
−π/2LG1

(
ω + α+ π

2L

)
e−iω(t−2nL)dω

(13)
Choosing c = θm in (11) then allows to get (14).

Uk (t) /b+k (t) =∑
n∈Z c

+
n (t− θm)Zk (θm + 2nL) , k > 0

Uk (t) /b−k (t) =∑
n∈Z c

−
n (t− θm)Zk (θm + 2nL) , k < 0

(14)

for all indices k,m that can take 2L values. In the last equa-
tions, the θm define the sampling instants, the akn (t) are
given by the knowledge of the function G1 (ω) (frequency
pattern) and frequency band defined by α.
The samples Z (θm + 2nL) are known only for n = 0. For
theZ (θm + 2nL) to appear from (14), parameter α and func-
tion G1 (ω) have to obey particular conditions. Let assume
that

α ∈ π

2L
Z and G1

(
ω + α+

π

2L

)
is even. (15)

The latter condition means that G1 (ω) is symmetric with re-
spect to the axis ω = α + π

2L . When (15) is true, formulas
(14) can be summed up with respect to the index k, because
c+n (t) = c−n (t) = cn (t). Then

∑
0<|k|≤L

Uk (t)

bk (t− θm)
=
∑
n∈Z

cn (t− θm)Z (θm + 2nL)

(16)

bk (t) =

{
b+k (t) , k > 0
b−k (t) , k < 0.

(17)

Then c+n = c−n = cn and

cn (t) =
(−1)n

′
L

π

∫ π/2L
−π/2LG1

(
ω + α+ π

2L

)
cos [ω (t− 2L)] dω

(18)
with

n′ = n

(
1 +

2αL

π

)
. (19)
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(16) is a linear system of size 2Lx2L where the Uk (t) are the
unknowns, the indices k and m running on the set of values
−L,−L+ 1, ...,−2,−1, 1, 2, ..., L− 1, L. The bk, cn, θm are
known. If system (16) is invertible (this property depends on
the bk (t− θm)), the Uk (t) are obtained as functions of the
Z (θm + 2nL).

Neglecting terms for n 6= 0, system (16) allows to derive
values of the Uk (t). The following subsection show how to
deduce values of Z (t).

2.2. Formulas

A first formula has been derived in [13] with G1 (ω) = 1 giv-
ing good results in reconstruction of both functions and spec-
tra (compared to the Lomb-Scargle spectral estimator [14])
for band-limited deterministic functions approaching to zero
as time goes to infinity:∑

0<k≤L Zk (t) e−i(t−θm)(α+(k−1/2)π/L)+∑
−L≤k<0 Zk (t) ei(t−θm)(−α+(k+1/2)π/L) =∑

n∈Z (−1)
n′ sinc

[
π

2L (t− θm)− nπ
]
Z (θm + 2nL) .

(20)
The resolution of this (assumed invertible) system allows to
derive the Zk(t) and then Z (t) =

∑
0<|k|≤L Zk (t). Actu-

ally, the assumption that Z(t) must be close to 0 as time goes
to infinity is linked to the right hand side member of (20): for
n 6= 0, unknown and neglected samples Z (θm + 2nL) are
multiplied by a sinc function which is slowly decaying. In
this paper, we show that another choice for G1 (ω) can lead
to formulas with a squared sinc function (better decay) in the
right hand side, allowing to extend its applicability to random
processes without decay.
Let now G1 (ω) be defined on ∆1 by

G1 (ω) =

{
2L
π (ω − α) , ω ∈

(
α, α+ π

2L

)
2− 2L

π (ω − α) ,∈
(
α+ π

2L , α+ π
L

)
.

(21)

With this function, the product G1 (ω) eiωt is continuous on
∆1 (its value is 0 at the bounds α and α+ π

L ), which improves
the convergence of its Fourier series with respect to the previ-
ous formula (20). Let define the set of shifted filters Hk (ω)
(22). H1 (ω) = G1

(
ω − π

2L

)
, ω ∈

(
α+ π

2L , α+ 3π
2L

)
Hk (ω) =

{
H1

(
ω − (k − 1) πL

)
, k > 0

H1

(
−ω + (k + 1) πL

)
, k < 0.

(22)

The Hk(ω) are modulated versions of filters Gk(ω) with fre-
quency shift π/2L (half a ∆k band). Except near the bounds
of the intervals [α, α+ π] ,[−α− π,−α], the sum of con-
catenated functions Fk (ω) and Gk (ω) is equal to the con-
stant 1. Assuming that the spectrum s (ω) is null on intervals[
α, α+ π

2L

]
and

[
−α− π

2L ,−α
]

leads to

Z (t) =
∑

0<|k|≤l [Uk + Vk] (t) (23)

where Vk(t) is the output of a LIF with input Z(t) and com-
plex gain Hk (ω) (defined on ∆k ± π

2L , following the sign of
k).
The FSD (Fourier Series Development) of coefficients ak (t)
and a′k (t) of Gk (ω) eiωt and Hk (ω) eiωt are deduced from
the FSD of G1 (ω) eiωt:

akn (t) =
(−1)n

′

2 ei(α+(k− 1
2 ) πL )(t−2nL)sinc2

[
πt
4L −

nπ
2

]
, k > 0

(−1)n
′

2 ei(−α+(k+ 1
2 ) πL )(t−2nL)sinc2

[
πt
4L −

nπ
2

]
, k < 0.

(24)
a′kn (t) =

(−1)n+n′

2 ei(α+k πL )(t−2nL)sinc2
[
πt
4L −

nπ
2

]
, k > 0

(−1)n+n′

2 ei(−α+k πL )(t−2nL)sinc2
[
πt
4L −

nπ
2

]
, k < 0.

(25)
Using (16) and (23), these FSDs lead to the new formulas
neglecting the terms θm + 2nL for n 6= 0.

2
∑

0<k≤L Uk (t) e−i(t−θm)(α+(k−1/2)π/L)+

2
∑
−L≤k<0 Uk (t) ei(t−θm)(α−(k+1/2)π/L) ≈

sinc2
[
π

4L (t− θm)
]
Z (θm)

(26)

2
∑

0<k≤L Vk (t) e−i(t−θm)(α+kπ/L)+

2
∑
−L≤k<0 Vk (t) ei(t−θm)(α−kπ/L) ≈
sinc2

[
π

4L (t− θm)
]
Z (θm) .

(27)

Solving linear systems (26) and (27) gives access to filtered
versions of Z(t) (Uk(t) and Vk(t)) and allows reconstruction
of Z(t) using (23).

3. SIMULATIONS

For simulations, a time-continuous baseband random process
realizationW (t) is first built as gaussian random noise filtered
by a lowpass filter with cut-off frequency ωc so that the total
frequency band of W (t) is 2ωc. A realization of the process
W (t) is then modulated using (28) to get a bandpass process
Zα(t) with a two times larger total band. Note that the sym-
metry between the positive and negative bands is not required
to apply formulas.

Zα(t) = W (t) cos
(

(α+
π

2
)t
)

(28)

The case α = 0 corresponds to the baseband case in which
the spectrum of Z0(t) is in the interval [−π, π] provided the
frequency ωc is chosen smaller than π

2 . A time shifting ana-
lyzing window of length B − A is considered (the process is
to be reconstructed between t = A and t = B). In simula-
tions,B−A is related to the number of samples: the condition
2L ≥ B−A must be fulfilled to obtain a Landau rate smaller
than 1.
The 2L sampling instants θm are chosen uniformly distributed
over

[(
m− 1

10

)
B−A

2L ,
(
m+ 1

10

)
B−A

2L

]
, representing a non

negligible jitter in the distribution of the sampling instants (10
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percent). Note that even if the instants are chosen randomly
for simulations, this is only a realization of the uniform dis-
tribution: the instants are then assumed to be known and we
remain in the framework of deterministic sampling.
Figure of merit used in simulations is the Normalized MSE
(Mean Square Error) of the reconstruction on interval [A,B]
defined as

NMSE =

 B∫
A

∣∣∣Zα(t)− Ẑα(t)
∣∣∣2 dt

 /

 B∫
A

|Zα(t)|2 dt

 ,

(29)
where Ẑα(t) is the reconstructed realization of the process
Zα(t).

3.1. Influence of the number of samples 2L

In these simulations, a Landau rate slightly smaller than 1
(6/7) is assumed and α = 0. As a consequence, B = A +
2L 6

7 and the influence of L can also be interpreted as the in-
fluence of the window length B −A.
A process with large bandwidth is considered using ωc =
0.44π and the additional condition for applying new formula
ωc <

π
2 −

π
2L is valid only for L ≥ 9. Figure 1 displays

reconstruction NMSE using previous formulas (20) (formula
1) and new formulas (26), (27) (formula 2). Reconstruction
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Formula 1

Formula 2

Fig. 1. Reconstruction NMSE versus the number of non uni-
form samples L.

NMSE with new formulas remains globally lower than NMSE
obtained with previous formulas, except when L < 9. In this
case, spectrum s (ω) is not null on intervals

[
α, α+ π

2L

]
and[

−α− π
2L ,−α

]
and (23) is not exactly valid. Best results

are achieved with small number of non uniform samples 2L
around 70. With larger number of samples (2L > 100), nu-
merical instabilities in the inversion of formulas (20), (26)
and (27) can cause problems on reconstruction due to big size
matrices.

3.2. Frequency shift α

The number of non uniform sample is 2L = 70 and the pro-
cess is assumed to be observed between times instantsA = 10
and B = 70. As ωc = 0.44π, total band of the process

is 1.76π. When α > 0.04π, classical reconstruction can-
not be performed without prior filtering and frequency shift
in baseband because Shannon condition is no more fulfilled
but proposed formulas can still be applied (as illustrated fig-
ure 2 for α = 0 and figure 3 for α = 3π/2), provided α
is known. Using 100 Monte-Carlo runs, NMSEs obtained
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Fig. 2. Zoom on a reconstructed and theoretical realization of
process Z0(t) vs time for L = 35 and α = 0. The 3 curves
are superimposed.
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Fig. 3. Zoom on a reconstructed and theoretical realization of
process Zα(t) vs time for L = 35 and α = 3π/2.

for α = 0 with formulas 1 and 2 are respectively 1.77x10−5

and 1.72x10−5. With α = 3π/2, NMSEs are respectively
0.0086 and 0.00071, showing that reconstruction can also be
performed with α > 0 for large band processes with low over-
sampling relatively to the Landau rate and high jitter.

4. CONCLUSION

In this paper we have given and proved new exact formulas al-
lowing to derive at the same time estimations of reconstructed
signal and corresponding power spectra when the sampling
instants are not regularly spaced but assumed to be known.
Formulas obtained by using PNS2L (Periodic Nonuniform
Sampling) scheme are shown to be valid for random processes
with large band and non uniform observations with high jit-
ter. Moreover, an original solution for performing numerical
filtering directly from non uniform samples is derived from
formulas, giving access at the same time to filtered versions
of the process. Finally, formulas have been generalized to the
case when spectral support is divided into two symmetric in-
tervals using the general concept of Landau rate rather than
Nyquist rate to highlight the real width of the spectrum.
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