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ABSTRACT

Signal reconstruction from the smallest possible Fourier mea-

surements has been a key motivation in the compressed sens-

ing research. We present an approach that exploits the interde-

pendency and structural sparsity of partial derivatives for low-

ering the sampling rates necessary for accurate reconstruc-

tion. Our experiments show that for signals that are sparse in

the gradient domain our proposed method significantly out-

performs the existing approaches including the total variation

(TV) based CS reconstruction.

Index Terms— Compressed Sensing, Partial Fourier, To-

tal Variation, Gradient-domain Sparsity

1. INTRODUCTION

Signal reconstruction from the frequency domain samples

is a classical problem in signal processing that has been

widely studied [1, 2]. The problem arises in many sensing

applications such as magnetic resonance imaging (MRI) and

synthetic aperture radar [3]. Results in compressed sens-

ing (CS) have established that accurate reconstruction from

partial Fourier data is possible when the signal is sparse or

that it can be represented sparsely in a transform domain [4].

Partial Fourier sensing and sparse reconstruction enable the

reduction of the required number of measurements while

maintaining the accuracy of signal reconstruction [5]. Prin-

ciples of compressed sensing have been successfully applied

in MR imaging where the reduction of acquisition time is

all-important [6].

More generally for a linear sensing model, the reconstruc-

tion from partial data is formulated as a sparse solution to an

under-determined system of linear equations [7]. Solving

this under-determined system can be a well defined problem

when we have incoherency between the sensing basis and the

basis in which signal is sparsely represented [7]. While the

Fourier and Dirac are the exemplar sensing and representation

bases, natural images are often sparse in a transform domain.

Wavelets have been shown to be effective in sparse repre-

sentation of 1-D signals and their tensor-products have been

used as sparsifying transforms for multidimensional signals
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(e.g., images). Geometric transforms such as curvelets [8],

ridgelets [9] and surfacelets [10] improve the sparse rep-

resentation of multidimensional signals by adapting to the

anisotropic structures in the signal. While geometric trans-

forms improve the sparsity in representation, they are often

redundant representations [11] and the redundancy factor im-

pacts their effectiveness in practical reconstruction problems.

Another set of approaches to reconstruction from partial

Fourier data rely on some form of sparsity in the gradient

information [12, 5]. More specifically, the total variation

(TV) methods regularize the solution to the under-determined

system by penalizing the solutions with large variations. TV-

based regularization methods are particularly effective for

modeling images that are composed of homogeneous regions

with transient edges [5]. For the class of piecewise constant

signals the gradients exhibit more sparsity than the wavelet

representations as the edges often appear as non-zero coeffi-

cients in multiple scales in the wavelet expansion. Therefore,

the sparsity in the wavelet domain can be used together with

TV for improving the image reconstruction [12, 13]. Finite-

difference operators are a common choice for sparsification

in the analysis model [14] and they appear naturally for

piecewise constant signals in transform learning [15].

When either one of the partial derivatives are non-zero at a

point, the TV model observes a non-zero variation; therefore,

often the individual partial derivatives are sparser than the

TV penalty image. The gradient-based reconstruction meth-

ods [3] leverage this increase in sparsity and reconstruct the

partial (i.e., horizontal and vertical) derivatives individually

and reconstruct the image based on the recovered partials.

Motivated by the gradient-based reconstruction meth-

ods [3], we propose a new formulation of the sparse approx-

imation problem, from partial Fourier data, where all partial

derivatives are simultaneously reconstructed. Effectiveness

of this approach has been recently studied in the context

of tomographic reconstruction from limited X-ray measure-

ments in [16]. As discussed in Section 2, this formulation

benefits from the interdependence of the partial derivatives

and their structural sparsity to provide additional constraints

that improve the accuracy of reconstruction. Experiments

in Section 3 provide evidence that the proposed method

significantly outperforms TV-based CS reconstruction for

signals whose gradients are sparse.
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2. SPARSE APPROXIMATION OF PARTIAL

DERIVATIVES

Let f ∈ R
N denote an image with N pixels and F be the 2-D

Discrete Fourier Transform (DFT) restricted to a partial set of

frequencies. The partial Fourier data p, containing n < N
measurements, is obtained as p = Ff . Let Dx and Dy

denote horizontal and vertical differential (difference) oper-

ators. For the image f the partial derivatives are obtained by

fx = Dxf and fy = Dyf . The total variation-based CS re-

construction is the result of the following optimization prob-

lem:

f̂ = argmin
u∈RN

λ‖u‖BV + ‖Fu− p‖2
2
, (1)

where u is the optimization variable and ‖u‖BV is the total

variation, defined as ||Dxu||1 + ||Dyu||1 [12]. The regular-

ization parameter λ controls the sparsity of the gradient.

As discussed before, for a piecewise-constant image, the

gradient magnitude image ‖f‖BV , is often less sparse than

fx or fy . Based on this observation the gradient-based im-

age reconstruction method [3] reconstructs each of fx and fy
individually in a sparse approximation framework by solving

two separate convex problems:

f̂x =argmin
ux∈RN

λ‖ux‖1 + ‖Fux − px‖
2

2

f̂y =argmin
uy∈RN

λ‖uy‖1 + ‖Fuy − py‖
2

2
,

(2)

where px = FDxf and py = FDyf denote the partial

Fourier data of the horizontal and vertical partial derivative

images, obtained from p via the Fourier multipliers of Dx

and Dy as in [3]. These two problems approximate the gra-

dient field of the underlying image by a vector field. How-

ever, as these problems are solved separately, the recovered

vector field is not necessarily integrable and may not repre-

sent a valid gradient vector field. The post-processing ap-

proach presented in [3] is to obtain an integrable gradient vec-

tor field that approximates the nonintegrable recovered vector

field from (2), in a least-squares sense.

In our approach we propose to solve the two sparse ap-

proximation problems simultaneously by exploiting the in-

terdependence between the partial derivatives and incorporat-

ing the integrability constraint into the sparse approximation

problem, rather than post-processing estimation as in [3]. The

vector field [fx, fy]
T

corresponds to the gradient of a scalar

field – the image – if it is curl-free (i.e., the gradient field

is integrable and its integral along any closed curve is zero).

Therefore, the partial derivatives can be tied with an addi-

tional zero-curl constraint at the sparse approximation stage:

Dyfx = Dxfy. (3)

This constraint allows us to tie the two optimization problems

in (2) by penalizing solutions that exhibit non-zero curl:

f̂x, f̂y = argmin
ux,uy∈RN

λ(‖ux‖1 + ‖uy‖1) + ‖Fux − px‖
2

2
+

‖Fuy − py‖
2

2
+ γ‖Dyux −Dxuy‖

2

2
.

(4)

We define a new system matrix, G, and denote the corre-

sponding partial Fourier measurements from partial deriva-

tives by p′:

G =





F 0

0 F

γDy −γDx



 , p′ =





px

py

0



 .

Using the above definitions, the optimization problem in (4)

can be formulated into an ℓ1 regularized least squares problem

over 2N variables:

[f̂x, f̂y]
T = argmin

v∈R2N

λ‖v‖1 + ‖Gv − p′‖2
2
. (5)

The severity of the penalty for non-zero curl in the solution

to the sparse approximation problem is determined by the pa-

rameter γ that controls the fidelity of the solution versus the

integrability constraint.

The two optimization problems in (2) involve 2N inde-

pendent variables for which we have 2n (dependent) con-

straints given by px and py . In contrast the optimization

problem in (5) has 2n+N constraints on 2N variables repre-

senting the horizontal and vertical partial derivatives. These

additional N constraints help solve the sparse approximation

problem more effectively allowing us to reduce the number of

measurements n for a given sparsity rate of the signal.

The curl-free constraint becomes more effective in 3-

D, where the reconstruction of the three partial derivatives

(i.e., fx, fy and fz) can be improved by three additional con-

straints: Dxfy = Dyfx, Dxfz = Dzfx and Dzfy = Dyfz .

For reconstruction of a volume composed of N voxels from

n partial Fourier data, we can build an objective function,

similar to (5), that has 3N variables for all partial derivatives,

and 3n+ 3N (dependent) constraints.

Several approaches exist for reconstructing the scalar-

field (e.g. image) from its gradient data [17, 18, 19]. The

image can be reconstructed by solving the Poisson equation:

∇2 f̂ = Dxf̂x +Dy f̂y. (6)

where ∇2 is the Laplacian operator. The Fourier expansion

method [18] provides a solution that enforces integrability

when the optimization in (5) leads to a residual curl from its

fidelity term.

3. EXPERIMENTS

In our experiments we examine the effectiveness of image re-

construction in gradient domain through simultaneous recov-

ery of partial derivatives with the curl-free constraint. There-

fore we compare our method with total-variation-based (TV)
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CS reconstruction [20] as well as individual recovery of par-

tial derivatives (GradRec), from (2) as proposed in [3].

Similar to the experiments in [20, 3], the Fourier domain

sampling is performed with a radial pattern and the sampling

rate is defined as n/N . The regularization parameters in (5)

are found empirically and set to λ = 10−8 and γ = 0.5. For

the methods TV and GradRec the best regularization param-

eters were selected to provide the most accurate reconstruc-

tions they can offer.The reconstruction accuracy is measured

in terms of Signal to Noise Ratio (SNR) and reported in the

logarithmic scale (dB).

The first set of experiments are carried out with Shepp-

Logan phantom image of size 512×512. The reconstructions

are performed with only 2.5% of Fourier domain data, which

is half of the sampling rate reported in [3]. Fig. 1 shows the

results of gradient-based (GradRec) and TV-based (TV) CS

reconstructions as well as proposed (SPD) method. This ex-

periment suggests that when sampling rate is extremely low,

GradRec does not return a faithful reconstruction and the

curl-free constraint in SPD have a significant impact in the

success of the sparse approximation. At this sampling rate

TV image exhibits artifacts and poor recovery for the detailed

features at the bottom.

The results demonstrate that, at such extremely low sam-

pling rate, number of partial Fourier data is not enough for

individual recovery of f̂x and f̂y as in GradRec method, and

therefore projecting the recovered vector field onto an inte-

grable vector field [3] can not compensate for imperfect re-

covery. In contrast, the simultaneous recovery of the partial

derivatives, benefits from the additional 512 × 512 (depen-

dent) zero-curl constraints and allows for near optimal recon-

struction. Lack of enough samples also applies to the TV CS

reconstruction, where 6599 Fourier samples are not enough

for recovering 4386 non-zero pixels in the TV image (i.e., the

image with magnitude of gradients in f ).

The errors in reconstructions are shown in the last row

of Fig. 1, where the intensities are amplified by a factor of 10

for illustration purposes. The error exhibited in reconstruc-

tions from GradRec and TV imply that curl-free constraint

has a significant impact in reducing noise in homogeneous

regions as well as artifacts along the edges.

Fig. 2 shows the reconstruction results for the Marschner-

Lobb test function [21] limited to 2-D, quantized and sampled

at 256 × 256 (top left). The reconstruction was performed

from 18.5% of Fourier data. The images demonstrate the

significant impact of integrating zero-curl knowledge at the

sparse approximation stage. Strong artifacts are visible in re-

constructions with GradRec and TV methods, while SPD re-

covers a nearly perfect image with 30.15 dB accuracy in terms

of SNR. In this case, the 18.5% (12101) Fourier samples are

not enough for the individual recovery of f̂x and f̂y each with

6172 non-zeros while the curl-free constraint in SPD enables

accurate recovery. Similarly the TV CS reconstruction is un-

able to provide an accurate recovery as there are 10342 non-

(a) Ground Truth (b) GradRec: 7.35 dB

(c) TV: 14.61 dB (d) SPD: 37.72 dB

Error in (b) Error in (c) Error in (d)

Fig. 1. Reconstruction of Shepp-Logan phantom from par-

tial Fourier data at 2.5% sampling rate. The proposed SPD

outperforms TV in recovering the details. The last row shows

the errors in reconstruction (amplified by a factor of 10 for

illustration purposes.

zeros in the TV image.

In the next set of experiments, the ground truth is a re-

alistic analytical brain phantom of size 256× 256, developed

in [22](Fig. 3(a)). The brain phantom carries detailed features

and variations and effectively models real CT/MRI images.

The reconstruction results for brain image with 17% of the

Fourier data are shown in Fig. 3, which demonstrates the su-

periority of SPD method for recovery small features present

in biomedical images [22]. While the SNRs are reported for

the reconstruction of the entire image, Fig. 3(b,c, and d) show

zoomed-in view of a portion of the image for comparison pur-

poses. The last row in Fig. 3 shows the error images (ampli-

fied by a factor of 10 for illustration purposes) that highlight

the artifacts present along the edges for GradRec and TV re-

constructions while the proposed SPDmethod provides a near

optimal recovery for sampling rates as low as 17%.

In order to compare reconstruction accuracy of the three

methods as a function of sampling rate, SNR values for the
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Ground Truth GradRec: 8.63 dB

TV: 10.23 dB SPD: 30.15 dB

Fig. 2. The Marschner-Lobb dataset sampled at 256 × 256,

and recovered from 18.5% partial Fourier data.

Shepp-Logan and Brain experiments are plotted in Fig. 4.

Expected by typical phase transition behaviour of ℓ1 mini-

mization problems [7], the graph in Fig. 4(a) shows that SPD

is successful in finding the sparsest solution for the gradi-

ent vector field at lower sampling rates. This is attributed to

the extra constraints that enable accurate recovery from con-

vex optimization [7]. The plot also demonstrates that when

enough samples are taken in Fourier space (e.g., 5%), both

GradRec and SPD significantly outperform TV-based CS

method – that agrees with the experiments in [3]. The transi-

tion to the near optimal recovery for the SPD method occurs

at extremely low data rates (e.g., 2.5%). Fig. 4(b) shows

this experiment for the brain dataset which also demonstrates

that the phase transition occurs at lower sampling rates for the

proposed SPD method compared to TV and GradRec.

It is worth noting that for images with non-sparse gradi-

ents (e.g., the Lenna images), where individual partial deriva-

tives contain approximately as many non-zeros as the TV im-

age, accuracy of SPD is similar to TV reconstruction, with no

or little improvements.

4. CONCLUSION

In this paper, we propose a novel formulation for CS image

reconstruction from incomplete Fourier data that exploits the

interdependency of image partial derivatives to lower the nec-

essary sampling rates for accurate recovery. Our formula-

tion benefits from the integration of curl-free constraints into

the sparse approximation problem. The experimental results

show that at very low sampling rates (of Fourier data), the pro-

(a) Ground truth (b) GradRec:16.02 dB

(c) TV: 18.90 dB (d) SPD: 31.41 dB

Error in (b) Error in (c) Error in (d)

Fig. 3. Brain dataset recovered from partial Fourier data at a

17% sampling rate. Close-up views reveal near optimal re-

covery for the proposed SPD method. The last row are the

corresponding error images which are amplified by a factor

of 10 for illustration purposes.
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Fig. 4. Accuracy of reconstruction as a function of sampling

rate. (a) In the Shepp-Logan dataset the proposed SPD ap-

proach achieves highly accurate solutions at 2.5%. (b) In the

brain dataset this recovery occurs at 17% sampling rate.

posed approach achieves significantly higher accuracy, com-

pared to existing methods that rely on the sparsity in the gra-

dient information.
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