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ABSTRACT

Many divergence results for sampling series are in terms of the limit
superior and not the limit. This leaves the possibility of a conver-
gent subsequence. If there exists a convergent subsequence, adap-
tive signal processing techniques can be used. In this paper we
study sampling-based signal reconstruction and system approxima-
tion processes for the space PW1

π of bandlimited signals with ab-
solutely integrable Fourier transform. For all analyzed examples,
which include the peak value of the Shannon and the conjugated
Shannon sampling series, we prove strong divergence, i.e., diver-
gence for all subsequences. Hence, adaptive signal processing tech-
niques do not help in these cases. We further analyze whether an
adaptive choice of the reconstruction functions in the oversampling
case can improve the behavior.

Index Terms— strong divergence, Paley–Wiener space, linear
time-invariant system, reconstruction, Hilbert transform

1. INTRODUCTION

Sampling theory studies the reconstruction of a signal in terms of
its samples. In addition to its mathematical significance, sampling
theory plays a fundamental role in modern signal and information
processing because it is the basis for today’s digital world [1].

The fundamental initial result of the theory states that the Shan-
non sampling series can be used to reconstruct bandlimited signals f
with finite energy from their samples {f(k)}k∈Z. Since this initial
result, many different sampling theorems have been developed, and
determining the signal classes for which the theorems hold and the
mode of convergence now constitute an entire area of research [2–5].

In this paper we study the convergence behavior of different
sampling series for the Paley–Wiener space PW1

π consisting of ab-
solutely integrable bandlimited signals. Analyzing sampling series
and finding sampling theorems for the Paley–Wiener space PW1

π

has a long tradition [4, 6, 7]. Since Shannon’s initial result, efforts
have been made to extend it to larger signal spaces [6, 8, 9].

Before we state our main results, we introduce and motivate the
problems. Let

(SNf)(t) =

N∑
k=−N

f(k)
sin(π(t− k))

π(t− k)
(1)

denote the finite Shannon sampling series. It is well known that
SNf converges locally uniformly to f for all signals f ∈ PW1

π
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as N tends to infinity [4, 6, 7]. However, the series is not globally
uniformly convergent. The quantity

PNf = max
t∈R
|f(t)− (SNf)(t)| ,

i.e., the peak value of the reconstruction error, diverges for certain
f ∈ PW1

π as N tends to infinity: in [10] it has been shown that
there exists a signal f ∈ PW1

π such that lim supN→∞ PNf = ∞.
The divergence is only given in terms of the lim sup. In a sense
this is a weak notion of divergence, because it merely states the ex-
istence of a subsequence {Nn}n∈N of the natural numbers such that
limn→∞ PNnf = ∞. This leaves the possibility that there is a dif-
ferent subsequence {N∗n}n∈N such that limn→∞ PN∗nf = 0.

This was discussed in [11], and two conceivable situations were
phrased in two questions.
Question Q1: Does there for every f ∈ PW1

π , exist a subse-
quence {Nn}n∈N = {Nn(f)}n∈N of the natural numbers such that
supn∈N PNnf <∞?
Question Q2: Does there exist a subsequence {Nn}n∈N of the nat-
ural numbers such that supn∈N PNnf <∞ for all f ∈ PW1

π?
Note that the subsequence {Nn(f)}n∈N in question Q1 can depend
on the signal f that shall be reconstructed. Thus, the reconstruction
process SNn(f) is adapted to the signal f . The problem of finding
an index sequence, depending on the signal f , that is suitable for
achieving the desired goal, is a task of adaptive signal processing. In
the above example, the goal is the adaptive reconstruction of f from
the samples {f(k)}k∈Z. Adaptive signal processing covers most of
the practical important applications [12–14].

In contrast, the subsequence {Nn}n∈N in question Q2 is univer-
sal in the sense that it does not depend on f . Obviously, a positive
answer to question Q2 implies a positive answer to question Q1.

This brings us to the notion of strong divergence. We say that
a sequence {an}n∈N ⊂ R diverges strongly if limn→∞|an| = ∞.
Clearly this is a stronger statement than lim supn→∞|an| =∞, be-
cause in case of strong divergence we have limn→∞|aNn | = ∞
for all subsequences {Nn}n∈N of the natural numbers. So, if PNf
diverges strongly for all f ∈ PW1

π , then question Q1 and conse-
quently question Q2 have to be answered negatively.

In [15] it has been proved that there exists a function f ∈ PW1
π

such that PNf diverges strongly, i.e., that limN→∞ PNf = ∞.
Hence, neither question Q1 nor question Q2 can be answered in the
affirmative for the Shannon sampling series.

In this paper we analyze whether adaptivity can improve the con-
vergence behavior of sampling series. We study adaptivity in the
subsequence {Nn}n∈N and adaptivity in the kernel used for the re-
construction. We prove strong divergence, i.e., divergence for all
subsequences, for different sampling series, where only weak diver-
gence, i.e., divergence for certain subsequences, was known before.
We further give the order of divergence. We also study the approxi-
mation of linear time-invariant (LTI) systems and show that we have
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strong divergence there, even in the case of oversampling. Interest-
ingly, it is possible to show strong divergence if the system is the
Hilbert transform, which is a stable LTI system for PW1

π , i.e. the
space under consideration.

2. NOTATION

Let f̂ denote the Fourier transform of a function f , where f̂ is to be
understood in the distributional sense. By Lp(R), 1 ≤ p ≤ ∞, we
denote the usual Lp-spaces, equipped with the norm ‖ · ‖p. For σ >
0 let Bσ be the set of all entire functions f with the property that for
all ε > 0 there exists a constant C(ε) with |f(z)| ≤ C(ε) exp

(
(σ+

ε)|z|
)

for all z ∈ C. The Bernstein space Bpσ consists of all functions
in Bσ whose restriction to the real line is in Lp(R), 1 ≤ p ≤ ∞.
A function in Bpσ is called bandlimited to σ. For σ > 0 and 1 ≤
p ≤ ∞, we denote by PWp

σ the Paley-Wiener space of functions f
with a representation f(z) = 1/(2π)

∫ σ
−σ g(ω) eizω dω, z ∈ C, for

some g ∈ Lp[−σ, σ]. The norm for PWp
σ , 1 ≤ p < ∞, is given

by ‖f‖PWp
σ

= (1/(2π)
∫ σ
−σ|f̂(ω)|p dω)1/p. Note that PW1

π ⊃
PW2

π = B2
π .

3. SYSTEM APPROXIMATION

A more general problem than the reconstruction problem, where the
goal is to reconstruct a bandlimited signals f from its equidistant
samples {f(k)}k∈Z, is the system approximation problem, where
the goal is to approximate the output Tf of a stable LTI system T
from the samples {f(k)}k∈Z of the input signal f . This is the sit-
uation that is encountered in digital signal processing applications,
where the interest is not in the reconstruction of a signal, but rather
in the implementation of a system, i.e, the interest is in some trans-
formation Tf of the sampled input signal f .

We briefly review some basic definitions and facts about stable
linear time-invariant (LTI) systems. A linear system T : PWp

π →
PWp

π , 1 ≤ p ≤ ∞, is called stable if the operator T is bounded, i.e.,
if ‖T‖ := sup‖f‖PWpπ≤1‖Tf‖PWp

π
<∞. Furthermore, it is called

time-invariant if (Tf( · − a))(t) = (Tf)(t− a) for all f ∈ PWp
π

and t, a ∈ R. For every stable LTI system T : PW1
π → PW1

π ,
there exists exactly one function ĥT ∈ L∞[−π, π] such that

(Tf)(t) =
1

2π

∫ π

−π
f̂(ω)ĥT (ω) eiωt dω, t ∈ R,

for all f ∈ PW1
π [16]. Conversely, every function ĥT ∈ L∞[−π, π]

defines a stable LTI system T : PW1
π → PW1

π . The operator norm
of a stable LTI system T is given by ‖T‖ = ‖ĥ‖L∞[−π,π]. Note that
ĥT ∈ L∞[−π, π] ⊂ L2[−π, π], and consequently hT ∈ PW2

π .
Similar to the Shannon sampling series in the signal reconstruc-

tion problem, we can use the approximation process
∞∑

k=−∞

f(k)hT (t− k) (2)

in the system approximation problem. In order to analyze the con-
vergence behavior of (2), we introduce the abbreviation

(TNf)(t) =

N∑
k=−N

f(k)hT (t− k).

As already mentioned before, for certain signals in f ∈ PW1
π ,

the peak value of the reconstruction process ‖SNf‖∞ diverges

strongly as N tends to infinity. However, in the case of oversam-
pling, i.e., the case where the sampling rate is higher than Nyquist
rate, the signal reconstruction process SNf converges globally uni-
formly [17]. This is a situation where oversampling helps improve
the convergence behavior, consistent with engineering intuition. In
contrast, the convergence behavior of the system approximation pro-
cess (2) does not improve with oversampling [16]: for every t ∈ R
and every σ ∈ (0, π] there exist stable LTI systems T and signals
f ∈ PW1

σ such that

lim sup
N→∞

|(Tf)(t)− (TNf)(t)| =∞.

In this paper we refine the questions Q1 and Q2 and analyze the
following three questions:

1. Do we have the same strong divergence, which was proved
in [15] for SN , for the system approximation process TNf?

2. Is it possible to obtain quantitative results about the diver-
gence speed?

3. What happens in the case of oversampling?

4. CONJUGATED SHANNON AND SHANNON SERIES

In this section we analyze the behavior of conjugated Shannon sam-
pling series and the Shannon sampling series. We first study the con-
jugated Shannon sampling series with critical sampling at Nyquist
rate, i.e., the case without oversampling, and show that the answer
to question Q1 is negative in this case. To this end, let SNf denote
the finite Shannon sampling series as defined in (1), and

(HNf)(t) := (HSNf)(t) =

N∑
k=−N

f(k)
1− cos(π(t− k))

π(t− k)
(3)

the conjugated finite Shannon sampling series. H denotes the
Hilbert transform which is defined as the principal value integral

(Hf)(t) =
1

π
V.P.
∫ ∞
−∞

f(τ)

t− τ dτ =
1

π
lim
ε→0

∫
ε≤|t−τ |≤ 1

ε

f(τ)

t− τ dτ.

The Hilbert transform is of enormous practical significance and
plays a central role in the analysis of signal properties [18–22]. For
further applications, see for example [23] and references therein.

It is well-known that HNf converges locally uniformly to Hf
as N tends to infinity, that is, for τ > 0 we have

lim
N→∞

(
max
|t|≤τ
|(Hf)(t)− (HNf)(t)|

)
= 0.

The next theorem gives an answer about the global behavior of (3)
and to the question Q1.

Theorem 1. Let {εN}N∈N be an arbitrary sequence of positive
numbers converging to zero. There exists a signal f1 ∈ PW1

π such
that

lim
N→∞

1

εN log(N)

(
max
t∈R

(
N∑

k=−N

f1(k)
1− cos(π(t−k))

π(t−k)

))
=∞.

(4)

Remark 1. In Theorem 1 we have divergence to∞. If we replace the
max-operator in (4) by the min-operator, the resulting expression
converges to −∞. The same is true for Theorems 2– 4.
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Proof. Let {εN}N∈N be an arbitrary sequence of positive numbers
converging to zero, and ε̄N = maxM≥N εM , N ∈ N. Note that
ε̄N ≥ εN for all N ∈ N. Further, let {Nk}k∈N be a strictly mono-
tonically increasing sequence of natural numbers, such that ε̄Nk >
ε̄Nk+1 , k ∈ N. We set δk =

√
ε̄Nk −

√
ε̄Nk+1 , k ∈ N. It follows

that δk > 0 for all k ∈ N and that

∞∑
k=1

δk =
√
ε̄N1 <∞. (5)

For N ∈ N we define the functions

wN (t) =

∞∑
k=−∞

wN (k)
sin(π(t− k))

π(t− k)
, t ∈ R,

where wN (k) is given by

wN (k) =


1, |k| ≤ N,
1− |k|−N

N
, N < |k| < 2N,

0, |k| ≥ 2N.

Note that we have wN ∈ PW1
π and ‖wN‖PW1

π
< 3 for all N ∈ N

[24]. Based on wN we define function

f1 =

∞∑
k=1

δkwNk+1 . (6)

Since ‖δkwNk+1‖PW1
π
< 3δk and because of (5), it follows that the

partial sums of the series in (6) form a Cauchy sequence in PW1
π ,

and thus the series in (6) converges in the PW1
π-norm and conse-

quently uniformly on R. Let N ∈ N be arbitrary but fixed. For
tN = N + 1, it follows that

N∑
l=−N

f1(l)
1− cos(π(tN − l))

π(tN − l)
=

N∑
l=−N

f1(l)
1− (−1)N+1−l

π(N + 1− l) .

(7)

There exists exactly one k̂ ∈ N such that N ∈ [Nk̂, Nk̂+1). We
have

N∑
l=−N

f1(l)
1− (−1)N+1−l

π(N + 1− l) ≥
∞∑
k=k̂

δk
π

N∑
l=−N

1− (−1)N+1−l

N + 1− l ,

where we used that wNk+1(l) = 1 for all k ≥ k̂ and all |l| ≤ N .
Further, we have

∞∑
k=k̂

δk
π

N∑
l=−N

1− (−1)N+1−l

N + 1− l =
1

π

∞∑
k=k̂

δk

N∑
l=0

2

2l + 1

≥ 1

π
log(2N + 3)

√
ε̄N

k̂
≥ 1

π
εN log(N)

1√
εN

(8)

because N ≥ Nk̂ and thus
√
ε̄N

k̂
≥ √εN

k̂
≥ √εN . From (7)–(8),

we see that

N∑
l=−N

f1(l)
1− cos(π(tN − l))

π(tN − l)
≥ 1

π
εN log(N)

1√
εN

for all N ∈ N, which in turn implies (4).

ω

1

π
2

−π
2

π−π aπ−aπ

q̂1 q̂2

Fig. 1. Definition of q̂1 (solid line) and q̂2 (dashed line).

Next, we analyze the oversampling case for the conjugated
Shannon sampling series, i.e., we treat question 3 from Section 3.

For the Shannon sampling series the convergence behavior in the
case of oversampling is clear: we have global uniform convergence
[17]. However, this is not true for the conjugated Shannon sampling
series as the next theorem shows.

Theorem 2. Let {εN}N∈N be an arbitrary sequence of positive
numbers converging to zero. For every σ ∈ (0, π] there exists a
signal fσ ∈ PW1

σ such that

lim
N→∞

1

εN log(N)

(
max
t∈R

(
N∑

k=−N

fσ(k)
1− cos(π(t−k))

π(t−k)

))
=∞.

Theorem 2 shows that in the case of oversampling, we have
the same divergence behavior and speed that was observed in The-
orem 1, i.e, the case without oversampling. That is, if we use over-
sampling as in Theorem 2, we have no improvement. Of course, due
to oversampling, we have the freedom to use better, faster decaying
kernels than those in Theorem 2. We will analyze this situation in
Section 5.

Sketch of Proof. For the proof we use the signal f1 from Theorem 1,
which is defined in (6), and split it in the frequency domain into two
parts:

f̂σ(ω) =

{
f̂1(ω), |ω| < σ,

0, σ ≤ |ω| ≤ π
and

r̂σ(ω) =

{
0, |ω| < σ,

f̂1(ω), σ ≤ |ω| ≤ π.

For the rest of the proof we only present the idea and omit details1.
Using the properties of the signal f1, we see that rσ is in PW2

π .
Thus, the divergence is created by the difference signal fσ .

Next, we come to the Shannon sampling series for the case of
critical sampling at Nyquist rate. In [15] it has been proved that there
exists a signal f ∈ PW1

π such that ‖SNf‖∞ diverges strongly, i.e.,
that limN→∞‖SNf‖∞ = ∞, and thus shown that the answer to
question Q1 is negative. However, in [15] the authors also raised a
question regarding the divergence order. Using the signal f1 from
the proof of Theorem 1, it is possible to answer this question.

Theorem 3. Let {εN}N∈N be an arbitrary sequence of positive
numbers converging to zero. There exists a signal f2 ∈ PW1

π such
that

lim
N→∞

1

εN log(N)

(
max
t∈R

(
N∑

k=−N

f2(k)
sin(π(t− k))

π(t− k)

))
=∞.

Theorem 3 shows that for the Shannon sampling series it is pos-
sible to have strong divergence with order εN log(N) for all zero
sequences εN . This answers question 2 from Section 3.

1An extended version of this paper is in preparation, where we will in-
clude the full proofs of all theorems.
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5. OVERSAMPLING AND KERNELS

We now come back to the situation where we know the signal f on an
oversampling set. In Theorem 2 we already studied the oversampling
case for the conjugated Shannon sampling series and observed that
mere oversampling with the standard kernel does not remove the
divergence. However, the redundance introduced by oversampling
allows us to use other, faster decaying kernels. This introduces a
further degree of freedom that can be employed for adaptivity. In
addition to the subsequence {Nn}n∈N, we now can also choose the
reconstruction kernel dependently on the signal f . Thus, question
Q1 can be extended in the case of oversampling to also include the
adaptive choice of the kernel. We will show in this section that for
every arbitrary amount of oversampling the extended question Q1
has to be answered negatively. That is, even the joint optimization
of the choice of the subsequence {Nn}n∈N and the reconstruction
kernel cannot circumvent the divergence.

We first consider the signal reconstruction problem. In the over-
sampling case, it is possible to create absolutely convergent sampling
series by using other kernels than the sinc-kernel [4, 25, 26]. In par-
ticular, all kernels φ in the setM(a), which is defined next, can be
used.

Definition 1. M(a), a > 1, is the set of functions φ ∈ B1
aπ with

φ̂(ω) = 1/a for |ω| ≤ π.

The functions inM(a), a > 1, are suitable kernels for the sam-
pling series, because for all f ∈ PW1

π and a > 1 we have

lim
N→∞

max
t∈R

∣∣∣∣∣f(t)−
N∑

k=−N

f

(
k

a

)
φ

(
t− k

a

)∣∣∣∣∣ = 0

if φ ∈M(a). We introduce the abbreviation

(Ha
N,φf)(t) =

N∑
k=−N

f

(
k

a

)
(Hφ)

(
t− k

a

)
.

Theorem 4. Let {εN}N∈N be an arbitrary sequence of positive
numbers converging to zero. There exists a universal signal f1 ∈
PW1

π such that for all a > 1 and for all φ ∈M(a) we have

lim
N→∞

1

εN log(N)
max
t∈R

(Ha
N,φf1)(t) =∞.

Theorem 4 shows that it is possible to have strong divergence
with order εN log(N) for all zero sequences εN even in the case of
oversampling and the full adaptivity regarding the choice of φ.
Remark 2. We have the following result. Let a > 1 be arbitrary. For
every φ ∈M(a) there exists a constant C1 such that ‖Ha

N,φf‖∞ ≤
C1 log(N)‖f‖PW1

π
for all N ≥ 2 and all f ∈ PW1

π . It follows
that

lim
N→∞

‖Ha
N,φf‖∞

log(N)
= 0.

This shows how sharp the result in Theorem 4 is. Note that the same
result is also true for Theorems 1–3.

The proof of Theorem 4 uses the following lemma from [27].

Lemma 1. For all a > 1, f ∈ PW1
π , N ∈ N and |t| ≥ (N + 1)/a

we have
N∑

k=−N

∣∣∣∣f (ka
)
r

(
t− k

a

)∣∣∣∣ < a2‖f‖∞,

where
r(t) =

2

π2t2

(
sin(πt)− sin

(π
2
t
))

. (9)

Sketch of Proof of Theorem 4. Let a > 1 be arbitrary but fixed. Fur-
thermore, let q̂1 and q̂2 be the functions defined in Figure 1 and
φ ∈ M(a) some arbitrary reconstruction kernel. Then we have
φ = φ ∗ q1 + φ ∗ q2 = q1 + φ ∗ q2 and Hφ = Hq1 + H(φ ∗
q2) = Hq1 + φ ∗ (Hq2). Since Hq2 ∈ L1(R), it follows that
s := φ ∗ (Hq2) ∈ L1(R). Moreover, for N ∈ N and f ∈ PW1

π we
have ∣∣(Ha

N,φf)(t)− (Ha
N,q1f)(t)

∣∣ ≤ C2‖f‖∞‖s‖B1
aπ
, (10)

where we used Nikol’skiı̆’s inequality [8, p. 49]. For τ 6= 0 we can
simplify (Hq1)(τ), using integration by parts, according to

(Hq1)(τ) =
1

2π

∫ π

−π
−i sgn(ω)q̂1(ω) eiωτ dω

=
1

π

∫ π

0

sin(ωτ)q̂1(ω) dω =
1

πτ
− r(τ),

where r is defined as in (9). For |t| ≥ (N + 1)/a we thus obtain

(Ha
N,q1f)(t) =

N∑
k=−N

f

(
k

a

)
1

π
(
t− k

a

) − N∑
k=−N

f

(
k

a

)
r

(
t− k

a

)
,

and since |
∑N
k=−N f

(
k
a

)
r
(
t− k

a

)
| < a2‖f‖∞ by Lemma 1, it

follows that

(Ha
N,q1f)(t) >

N∑
k=−N

f

(
k

a

)
1

π
(
t− k

a

) − a2‖f‖∞. (11)

Combining (10) and (11) we see that

(Ha
N,φf)(t) ≥ (Ha

N,q1f)(t)− C2‖f‖∞‖s‖B1
aπ

>

N∑
k=−N

f

(
k

a

)
1

π
(
t− k

a

) − (a2 + C2‖s‖B1
aπ

)‖f‖∞

for all |t| ≥ (N + 1)/a and all f ∈ PW1
π . Hence, it suffices to

concentrate the analysis on
∑N
k=−N f

(
k
a

)
1

π(t−k/a) in the follow-
ing. The rest of the proof is similar to the proof of Theorem 1 and
omitted due to space constraints.

6. RELATION TO PRIOR WORK

In the analysis of sampling series for signal reconstruction and
system approximation, the focus was on proving weak divergence.
However, weak divergence does not exclude the possibility that we
have convergence for a certain subsequence and thus that adaptive
approaches can be used. In contrast, strong divergence implies that
this kind of adaptivity is useless. Although adaptive signal process-
ing has been a very active area of research with numerous interesting
and useful results [12–14], the general question of strong divergence
has not been addressed. It seems that this is a new direction.

Only recently, the concept of strong divergence gained attention
in the analysis of sampling series. In [15] a first result was given, by
proving the strong divergence of the peak value of the Shannon sam-
pling series. Here, we consider the adaptive system approximation
with oversampling and adaptive choice of the reconstruction kernel,
and show strong divergence for the analyzed series. Further, by pro-
viding the explicit divergence speed in our theorems, we answer a
question about the divergence speed that was raised in [15]. In the
case of strong divergence it is interesting to know the size of the
set of signals for which it occurs. This question, which was posed
in [11], will be answered in [28]. Currently, strong divergence has to
be proved from case to case with different tools, because a general
theory is still missing.
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