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ABSTRACT

Extracting a target source signal from multiple noisy observations is

an essential task in many applications of signal processing such as

digital communications or speech and audio processing. The multi-

channel Wiener filter is able to solve this task in a minimum-mean-

square-error (MMSE) optimal way by applying a spatial filter suc-

ceeded by a spectral postfilter. Its direct implementation, however,

is difficult due to requiring the statistics of the unobservable source

and noise signals. In this paper, we apply the signal-separation-based

technique of multichannel decorrelation and reveal its relation to the

Wiener post-filtering component. On this basis, we present a numer-

ically robust and efficient adaptive algorithm to find an estimate of

the MMSE-optimal postfilter based on the statistics of the observable

signals alone. Experimental evaluation demonstrates the validity of

the proposed approach and confirms the convergence of the adaptive

algorithm to the MMSE-optimal postfilter solution.

Index Terms— Multichannel Wiener filter, multichannel decor-

relation, adaptive filters, post-filtering

1. INTRODUCTION

Multichannel Wiener filtering (MWF) has attracted the signal pro-

cessing community for its ability to extract a target source signal

with minimum mean-square error (MMSE) from multiple noisy ob-

servations, thereby utilizing the diversity information related to the

multiple sensors [1, 2, 3]. Some applications, such as speech and

audio signal processing, or digital communications, found means to

partly detect the required a priori information of the noisy processes

from the available signals. The field of blind channel identification

[4], for instance, emerged in digital communications and further

evolved in the speech community to detect the source-to-receiver

transfer functions [5, 6, 7, 8, 9] needed for the implementation of the

spatial minimum variance distortionless response (MVDR) beam-

former part of the MWF [10]. The speech enhancement field addi-

tionally provides options to detect the signal-to-noise ratio (SNR) of

the MVDR output, effectively via estimation of the covariance of the

unobservable noise signals, which turns out to be crucial for the per-

formance of MWF [11]. The frequency-dependent SNR is then used

for spectral-enhancement filtering, the second part of the MWF, sub-

sequent to the MVDR part [12, 10, 13, 14]. In speech enhancement,

the noise covariance estimation is mainly performed by capitalizing

on the fact that the speech signal is assumed to be less stationary than

the environment noise [15, 16, 17] or, alternatively, by beamforming

approaches [18]. Other approaches make use of the cross-correlation

or coherence to adapt an appropriate postfilter [19, 20, 21].

In our contribution, we revert to the case of stationary Wiener

filter theory, where the SNR cannot be detected from the MVDR

output alone. In order to overcome this fundamental limitation, we

suggest to look at MMSE-optimal individual reconstructions of the

target signal at the individual sensors via the MWF, similar to the

approach in hearing aid applications where linear modifications as-

sociated with binaural cues are to be preserved [22, 23, 24]. In par-

ticular, we look at the individual output errors with respect to the

original individual sensor signals. These output errors can be con-

sidered estimates of the observation noise and were thus decorre-

lated if the original observation noises were mutually independent.

Hence, we propose to enforce such decorrelation of the observable

output error processes to retrieve an optimal decorrelation postfilter

that is related to the MMSE-optimal spectral postfilter component of

the MWF. This technique is referred to as multichannel decorrela-

tion (MCD) and the paper describes the exact relationship of MCD

andMWF, which turns out to be a simple memoryless mapping func-

tion. On this basis, we derive a numerically robust and efficient algo-

rithm to adapt the MCD solution and exploit the found relationship

to obtain an estimated postfilter that converges to the ideal MWF

postfilter. Simulations illustrate how both the available number of

observations in time and the number of channels contribute to this

convergence.

The remainder of our paper is organized as follows. Sec. 2 will

review the multichannel Wiener filter and its decomposition into a

spatial filter and a spectral postfilter. In Sec. 3 we introduce the idea

of multichannel decorrelation and highlight its relation to multichan-

nel Wiener post-filtering before presenting the proposed algorithm

for postfilter adaptation in Sec. 4. Sec. 5 provides experimental val-

idation of the proposed technique and finally Sec. 6 concludes this

contribution by distinguishing it from prior work.

Throughout this paper we will use uppercase letters to denote

frequency domain quantities, bold-face letters for vectors, and un-

derlined letters for matrices. I and 0 are identity and all-zero matri-

ces of the size defined by a subscript and E {·} is statistical expec-

tation, while (·)∗, (·)T , (·)H , and (·)−1 denote complex conjugate,

matrix transpose, Hermitian transpose, and inverse, respectively.

2. MULTICHANNELWIENER FILTERING

We consider a multichannel system consisting of P channels in the

frequency domain for a single frequency bin only, where we omit

the frequency index for clarity of presentation. In our system, a sin-

gle source signal S is transmitted via channels Hi, i = 1 . . . P , to

receivers that pick up signals Yi as a sum of the transmitted signals

Di = Hi S and observation noiseNi, cf. Fig. 1. We may compactly

write this in vector notation as

Y = D+N , (1)

where D = HS and the signal and channel vectors are defined

as Y = [Y1 Y2 · · · YP ]
T
, N = [N1 N2 · · · NP ]

T
, and H =

[H1 H2 · · · HP ]
T
, respectively.

The multichannel Wiener filter (MWF) is the MMSE-optimal

estimator for the source signal in this multichannel scenario [10, 12],
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Fig. 1. Signal model and multichannel Wiener filter decomposition.

and can provide an estimate D̂i of Di that minimizes JMSE =
∑P

i=1 E
{
(Di − D̂i)(Di − D̂i)

∗
}
. This estimate is obtained by

applying filters Wi,opt to the received signal vector Y, i.e., D̂i =
WT

i,optY. By minimization of JMSE, this filter can be found to be

a regular MWF [10], multiplied by the respective channel transfer

functionHi,

Wi,opt = Hi

(
H

∗
H

TΦS +ΦN

)−1

H
∗ΦS

= Hi WMVDR Gopt , (2)

that can be decomposed into an MVDR beamformer WMVDR for

spatial filtering and a single-channel Wiener postfilterGopt for spec-

tral enhancement [10, 12], i.e.,

WMVDR =
Φ−1

N H∗

HTΦ−1
N H∗

, (3)

Gopt =
ΦS

ΦS +
(
HTΦ−1

N H∗
)−1

. (4)

The spatial and spectral filter components of the MWF require the

covariances ΦS = E {SS∗} and ΦN = E
{
NNH

}
of the source

and observation noise signals, respectively. Fig. 1 summarizes the

structural decomposition of the MWF, where the MVDR output sig-

nal is denoted Z = WT
MVDRY.

In this paper we are particularly interested in the so-called post-

filter component Gopt of the MWF, assuming that a reasonable

MVDR-estimate has already been found. Since the covariances

required in (4) are those of the unobservable processes S and N, it

is subject to research how to estimate these statistics from the ob-

servable signals Y. A good overview is provided, e.g., in [12, 13].

In contrast to estimating ΦS and ΦN and constructing the postfilter

separately, we present in the following section a technique to adapt

a postfilter in a more contained fashion based on the observable

signals only.

3. MULTICHANNEL DECORRELATION

In this section we assume that the observation noise is uncorrelated

and, for ease of presentation, also has equal varianceΦN on all chan-

nels, i.e., ΦN = ΦNIP×P . This assumption to some extent simpli-

fies the MWF decomposition such that (3) and (4) become

WMVDR =
H∗

‖H‖2
, (5)

Gopt =
ΦS

ΦS + ΦN

‖H‖2

, (6)

where ‖H‖2 = HHH. The assumption of a diagonal noise covari-

ance then allows to apply techniques from source separation to yield

a multichannel decorrelation procedure that eventually relates to the

estimation of the Wiener postfilter Gopt for signal enhancement.
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Fig. 2. Block diagram of multichannel decorrelation.

3.1. Concept of Multichannel Decorrelation

In our multichannel decorrelation (MCD) approach illustrated in Fig.

2, we assume that a blind channel identification (BCI) technique has

been applied to yield channel estimates Ĥ =
[
Ĥ1 Ĥ2 · · · ĤP

]T
.

For cross-relation-based BCI algorithms [4, 25], it has been shown

that the error due to the blindness of the approach can be expressed

as a single channel convolutive error in time domain [26]. In our fre-

quency domain model wemay therefore describe the estimated chan-

nels as Ĥ = F H, where F denotes an arbitrary complex-valued er-

ror that is common to all channels in a certain frequency band. The

blindly estimated Ĥ are then used to implement an MVDR beam-

former according to (5) and for reconstructing the individual D̃i.

As depicted in Fig. 2, we aim to find the single channel filter G̃
that spectrally modifies the MVDR output Z such that the error

E = Y − D̃ ≈ N (7)

between the observed signals Y and estimated signals D̃ =

Ĥ G̃ Z =
[
D̃1 D̃2 · · · D̃P

]T
, is decorrelated in the sense that

the error covariance ΦE = E
{
EEH

}
is rendered diagonal.

3.2. Cost Function and Optimal MCD Postfilter

For calculating a postfilter G̃ that minimizes the cross-covariance of

the error signals in (7) we define the cost function

JMCD(G̃) = log det diagΦE − log detΦE (8)

as a variant of the cost function proposed in [27] for speech sig-

nal separation, which has later been generalized in an information-

theoretic sense [28].

To find the optimum postfilter G̃ for decorrelation, we set the

derivative [29] of the cost function in (8)

d JMCD(G̃)

d G̃
= Tr

[
(diagΦE)

−1 d diagΦE

d G̃

]
−Tr

[
Φ

−1
E

dΦE

d G̃

]

(9)

to zero and insert the expanded error covariance based on (7), i.e.,

ΦE = G̃2ΦZĤĤ
H − 2 G̃ΦY

ĤĤH

‖Ĥ‖2
+ΦY , (10)

where the covariance of the received signals,

ΦY = E
{
YY

H
}

= ΦSHH
H +ΦN IP×P (11)
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is the sum of a rank-one matrix and the fully diagonal noise covari-

ance, and the output covariance of the MVDR beamformer is

ΦZ = E {ZZ∗}

=
ĤH

‖Ĥ‖2

(
ΦSHH

H +ΦN IP×P

)
Ĥ

‖Ĥ‖2

=
1

|F |2

(
ΦS +

ΦN

‖H‖2

)
. (12)

After rearranging the final result, we find a total of three equilibrium

points of the cost function in (8). The first solution, G̃⋆
1 = 1, turns

out to be a fixed local maximum of the cost function, whereas the

second and third solutions

G̃⋆
2/3 = 1±

√
1−

ΦS

ΦS + ΦN

‖H‖2

(13)

are local minima. In fact, G̃⋆
2/3 are global minima, which can be

understood by inserting both (11) and (12) into (10) and eventually

substituting (13), i.e.,

ΦE =
(
G̃⋆

2/3

)2
ΦZĤĤ

H − 2 G̃⋆
2/3ΦY

ĤĤH

‖Ĥ‖2
+ΦY

=
(
G̃⋆

2/3

)2 (
ΦS +

ΦN

‖H‖2

)
HH

H

− 2 G̃⋆
2/3

(
ΦS +

ΦN

‖H‖2

)
HH

H + ΦSHH
H + ΦNIP×P

= ΦNIP×P . (14)

Solutions G̃⋆
2/3 thus fully diagonalize the error covariance and fur-

ther enforce JMCD(G̃
⋆
2/3) = 0. The cost function in (8) is a non-

negative function by virtue of Hadamard’s inequality [30] and we

therefore conclude that G̃⋆
2/3 are global minima as anticipated. No-

tice also that (14), and hence the optimality of G̃⋆
2/3 in terms of ideal

decorrelation, holds regardless of the arbitrary error factor F intro-

duced by the BCI because it cancels in all terms. The MCD solution

is therefore robust to this kind of unavoidable error factor.

3.3. Relation to Multichannel Wiener Filter

While the MWF has been designed to yield MMSE-optimal esti-

mates D̂i of the transmitted signal components Di, the previously

derived MCD approach effectively constructs D̃i such that the cor-

responding error signals Ei are mutually uncorrelated. Since Gopt

and G̃⋆
2/3 minimize their respective cost functions JMSE and JMCD

it is clear that neither would the MWF ideally decorrelate the out-

put errors nor would the MCD solution be MMSE-optimal. In fact,

by comparing the filter gainGopt to G̃
⋆
3
1 for various signal-to-noise

ratios (SNR) at the MVDR output, cf. Fig. 3, we observe that G̃⋆
3 is

overly aggressive w.r.t. the optimal MMSE signal enhancement.

Inspecting (6) and (13), however, we interestingly find that both

optimal postfilters are essentially functions of the source variance

ΦS and the effective noise variance ΦN/‖H‖2 at the MVDR output.

Hence, it is easily possible to come up with a memoryless nonlinear

mapping between G̃⋆
2/3 and Gopt, i.e.,

Gopt = 1−
(
G̃⋆

2/3 − 1
)2

. (15)

1We choose G̃⋆
3 over G̃⋆

2 here, since 0<G̃⋆
3<1 similar to 0<Gopt<1 .
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It is important to notice that the decorrelating postfilter G̃ is derived

from a cost function based on the observable errors E only. We

therefore propose MCD in conjunction with (15) to obtain an esti-

mate Ĝ of the optimal signal enhancement postfilter Gopt without

the need to infer statistics ΦS and ΦN of the unobservable signals.

4. POSTFILTER ADAPTATION ALGORITHM

The MCD cost function in (8) is based on observable signals only,

yet a straightforward minimization by means of gradient descent

[31] turns out to be computationally inconvenient and might cause

numerical problems since the gradient in (9) requires the inverse

of the error covariance. We have, however, shown that the opti-

mal MCD postfilter G̃⋆
2/3 reduces the cost function to zero and thus

makes ΦE a fully diagonal matrix. We may therefore approach a

data-driven calculation of G̃ by removing the main diagonal from all

involved matrices in (10) and solve

0P×P = G̃2ΦZ

(
ĤĤ

H − diag
(
ĤĤ

H
))

− 2 G̃

(
ΦY

ĤĤH

‖Ĥ‖2
− diag

(
ΦY

ĤĤH

‖Ĥ‖2

))

+ (ΦY − diagΦY ) . (16)

Since the system of equations in (16) holds for every single element,

we can likewise turn this into a vector equation

0P2 = G̃2
a+ G̃b+ c , (17)

in which the P 2-element vectors

a = ΦZ vect
(
ĤĤ

H − diag
(
ĤĤ

H
))

, (18)

b = −2 vect

(
ΦY

ĤĤH

‖Ĥ‖2
− diag

(
ΦY

ĤĤH

‖Ĥ‖2

))
, (19)

c = vect (ΦY − diagΦY ) (20)

contain the elements of the respective matrices in arbitrary order. In

block-frequency domain processing, we may obtain estimates Φ̂Y

and Φ̂Z by averaging YYH and |Z|2, respectively, over a fixed

number of signal frames, to approximate the vectors in (18) to (20).

Eq. (17) can then be considered as a nonlinear least-squares problem

and can be solved, e.g., by applying the Gauss-Newton algorithm

[32]. We obtain the MCD postfilter by repeating Q times the Gauss-
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Fig. 4. Comparison of SNR improvement for different numbers of

signal frames used for Φ̂Y calculation.

Newton iteration with iteration index q

r
(q) = 0−

(
(G̃(q))2 a+ G̃(q)

b+ c
)
, (21)

j
(q) =

d r(q)

d G̃(q)
= −2 G̃(q)

a− b , (22)

G̃(q+1) = G̃(q) −
(j(q))Hr(q)

‖j(q)‖2
(23)

and initializing 0 < G(1) < 1. Notice that, since the residual r(q)

in (21) and the Jacobian j(q) in (22) are vectors, the update in (23)

can be implemented efficiently. Finally, an estimate Ĝ of the signal

enhancement postfilter is generated by substituting the final Gauss-

Newton solution G̃(Q) into (15), i.e.,

Ĝ = 1−
(
G̃(Q) − 1

)2
. (24)

5. EXPERIMENTAL RESULTS

For experimental validation of the proposed approach we generate

multiple received signals in time domain using transmission chan-

nels with 256 exponentially decaying random numbers to model,

e.g., room impulse responses, and white noise as a single source

signal. Uncorrelated observation noise is added to obtain a defined

signal-to-noise ratio (SNR) at the receivers. The BCI channel esti-

mates are simulated by applying a common convolutive error to the

channels and these estimates are used for calculation of the MVDR.

All processing is performed in overlap-save-based block-

frequency domain using a frame length of 512 and a frame advance

of 256 [10]. For postfilter adaptation, the number of Gauss-Newton

iterations is set toQ = 5 and Φ̂Z is calculated over 10 signal frames.

In all experiments, we conduct 50 Monte-Carlo runs and present the

averaged results illustrating the performance of the adaptive post-

filter Ĝ in (24) and the theoretically optimal postfilter Gopt in (4)

as a reference, which is calculated using the true source and noise

covariance information.

Our first experiment investigates the deviation of Ĝ from Gopt

as a function of the number of signal frames used for Φ̂Y calculation.

For P = 5 and a receiver SNR of −10 dB, Fig. 4 depicts the SNR

improvement, i.e., the difference between output SNR and receiver

SNR in decibel.2 When no postfilter is applied, the MVDR alone

achieves a plausible SNR improvement of roughly (10 log10 P ) dB.
The upper bound is given by the fully informed postfilter Gopt. It is

approached by the adaptive postfilter Ĝ and already a small number

of signal frames (data points) seems to be sufficient for good conver-

gence of Ĝ to Gopt.

2Receiver: SNRrec = ΦD/ΦN ; output: SNRout = ΦD/Φ
(D−D̂)

.
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Fig. 5. SNR improvement vs. receiver SNR for P = 5 (�) and

P = 10 ( ) channels.

In a second experiment, we investigate the signal enhancement

of the proposed postfilter Ĝ over a wide range of receiver SNRs with

Φ̂Y averaged over 30 signal frames. Fig. 5(a) illustrates the SNR im-

provement for P = 5 and P = 10 when white observation noise is

considered while the results of the same experiment but with col-

ored low-pass observation noise are depicted in Fig. 5(b). We ob-

serve that, while the spatial MVDR filter alone is providing a fixed

SNR improvement, the postfilter significantly improves the SNR for

negative receiver SNRs. There is a strong agreement in the signal

enhancement properties of the informed and adapted postfilters, and

comparing Figs. 5(a) and (b) reveals that the adaptation works sim-

ilarly well for different noise types. For positive receiver SNR, the

improvement is reduced for all approaches due to the imperfection

of broadband equalization via narrowband MVDR [14]. In mid-SNR

range, the adaptive algorithm closely touches the informed solution.

6. CONCLUSIONS AND RELATION TO PRIOR WORK

In this contribution we have presented a novel approach to post-

filter adaptation for MMSE-optimal multichannel Wiener filtering.

The proposed solution is based on the relation between multichannel

decorrelation and optimal filtering that is exploited in the proposed

algorithm in a numerically robust and efficient way.

Previous approaches [15, 16, 17, 12, 13] for postfilter adaptation

are based on the idea of noise covariance estimation by relying on

the different degrees of stationarity in source signal and noise. The

quality of the noise covariance estimates, however, is crucial [11]

and the estimation itself is difficult since the noise is unobservable.

In contrast, the proposed approach exploits a new criterion via the

multichannel decorrelation, which can be performed on the received

signals and the MVDR output alone, both of which are readily avail-

able to the algorithm. It is therefore not restricted to the assumptions

of a non-stationary source in a stationary noise environment as is

shown by simulations with fully stationary setups.
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