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ABSTRACT
The task of determining informative sensors and clustering the sen-
sor measurements according to their information content is consid-
ered. To this end, the standard canonical correlation analysis (CCA)
framework is equipped with norm-one and norm-two regularization
terms to estimate the unknown number of field sources and identify
informative groups of sensors. Coordinate descent techniques are
combined with the alternating direction method of multipliers to de-
rive an algorithm that minimizes the regularized CCA framework.
An efficient scheme to properly select the regularization coefficients
associated with the norm-one and norm-two terms is also developed.
Numerical tests corroborate that the novel scheme outperforms ex-
isting alternatives.

Index Terms— Canonical correlation analysis, sparsity, cluster-
ing, optimization

1. INTRODUCTION

In sensor networks, the acquired sensor data contain information
about multiple sources, unknown in number, placed at different spa-
tial locations. Such sources could correspond to different e.g., ther-
mal sources or transmitters located inside the sensed field. Before
applying any statistical inference task, it is essential to determine
which groups of sensor observations contain information about the
same sources. This is essential to avoid ‘mixing’ observations that
contain information about uncorrelated sources and isolate sensors
that sense just noise.

In this paper a framework for grouping sensors based on their
information content is put forth which is able to deal with nonlin-
ear settings and unknown number of sources. Sensor measurements
containing information about the same sources are statistically cor-
related. To exploit such spatial correlations, CCA, see e.g., [6, 11],
is regularized with norm-one and norm-two terms [17, 19, 22] to ob-
tain a framework that can extract correlated sensor data and cluster
them in groups. Existing norm-one regularized CCA formulations
[7, 10, 20] seek to maximize the correlation between two data sets,
while performing variable selection, while [8] assumes the number
of sources is available.

To this end, the alternating direction method of multipliers
(ADMM) (see e.g., [4, 5]) and coordinate descent techniques [3, 18]
are put forth to minimize the regularized CCA framework. The
resulting iterative scheme involves simple updating recursions that
perform the task of sensor clustering at a fusion center. A simple
yet effective scheme is also put forth to appropriately select the
regularization coefficients. A number of different approaches have
been put forth to address the problem of clustering data into different
groups that share similar properties. The K-means algorithm [13] is
one of the major representatives when it comes to data clustering.
Clusters are represented by centroid points and the idea is to allocate
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each data vector to the cluster that has the most similar centroid
with respect to a distance metric. Variations that rely on underlying
probabilistic models and/or pertinent similarity measures have been
developed [2,21], while clustering techniques for an unknown num-
ber of clusters have also been proposed [9,14]. The challenge in our
setting stems from the fact that the type of similarity between sensor
data containing information about the same source is unknown due
to the unavailability of the underlying data model. Thus, the fact that
sensor measurements observe the same source does not necessarily
make them similar in e.g., magnitude or with respect to distance
metrics used by the above schemes. Numerical tests will demon-
strate the advantages of our approach over existing sensor clustering
alternatives.

2. PROBLEM FORMULATION

Consider p sensors that monitor a field formed by an unknown num-
ber of M zero-mean and spatially uncorrelated sources which are
modeled as stationary random variables sm(t) for t = 0, 2, ..., N−1
and m = 1, ...,M . Sensor j acquires at time instant t scalar mea-
surement xj(t) that adheres to the following unknown model

xj(t) =
∑M

m=1 gm,j(sm(t)) + wj(t), j = 1, 2, ..., p (1)

where gm,j(·) is a random nonlinear mapping (if sensor j does not
sense source m then gm,j(·) = 0), while wj(t) is zero-mean white
noise signal that is independent of the source signal sm(t). Denote
χ(t) := [x1(t) . . . xp(t)]

T ∈ Rp×1 as the measurements across the
p sensors which are transmitted to a fusion center.

It is assumed that the field sources are quite localized and affect a
small percentage of sensors in the network. This further implies that
different subsets of entries in χ(t) will contain information about
different field sources. Let Sm denote the subset of entries of χ(t)
that contain information about source sm(t), and let S0 denote the
subset of sensors whose measurements do not contain information
about any of the sources, e.g., sensors that acquire sensing noise.
For instance, in a network of p = 12 sensors that observe a field
with M = 2 sources, namely s1(t) and s2(t), if sensors {1, 2, 3, 7}
observe source s1(t), while sensors {4, 5, 6, 9} observe source s2(t)
and the rest of the sensors {8, 10, 11, 12} acquire just noise, then
S0 = {8, 10, 11, 12}, S1 = {1, 2, 3, 7} and S2 = {4, 5, 6, 9}. The
goals here is to estimate the unknown number of sources, and cluster
the entries in χ(t) according to their unknown source content.

Entries in χ(t) that contain information about the same source
are correlated. CCA is an effective way to extract common features
that are present in two data sequences and result correlations, see
e.g., [6]. Given the data sequence χ(t), the following two data se-
quences are build representing the past and present/future of the sen-
sor measurements at time instant t,
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x(t) =
[
χT (t− 1),χT (t− 2), . . . ,χT (t− f)

]T
(2)

y(t) =
[
χT (t),χT (t+ 1), . . . ,χT (t+ f − 1)

]T
(3)

where f ≥ 0 controls the memory length.
Given the data pairs {x(t),y(t)}Tτ=1 ∈ Rpf×1 the traditional CCA
is utilized to linearly extract common correlated features from them
[6, Chpt. 10], [11]. The latter task is performed by searching for
matrices E ∈ Rq×pf and D ∈ Rq×pf with q ≤ pf that minimize

(Ê, D̂) = argmin
E,D

N−1 ∑N−1
t=0 ∥Ey(t)−Dx(t)− µ̂∥22, (4)

s. to EΣ̂yE
T = I, DΣ̂xD

T = I, (5)

where ∥ · ∥2 denotes the Euclidean norm. The matrix Σ̂x :=

N−1 ∑N−1
t=0 (x(t)− µ̂x)(x(t)− µ̂x)

T denotes the sample-average
estimate for the covariance matrix of measurements x(t), while
µ̂x is the sample-average estimate for the expectation of x(t). The
covariance matrix Σ̂y is defined similarly, while µ̂ := Eµ̂y−Dµ̂x.
The optimal matrices Ê and D̂ can be found in, e.g., [6, pg. 370].

Intuitively, the reason for imposing the canonical variates
Êy(t) and D̂x(t) to be as similar as possible is the fact that each
entry of these estimators try to uncover the common sources sensed
in x(t) and y(t). However, in order for the latter task to be car-
ried out in standard CCA the number of sources has to be known,
i.e., q = M . Standard CCA has the ability to identify common
components (sources) contained in both x(t) and y(t), however is
not capable of identifying which entries in x(t) and y(t) contain
information about the same source. A necessary ingredient is the
proper introduction of zeros (sparsity) in the CCA matrices E and
D in a way such that the nonzero entries in each row of E and D
will point to these entries in x(t) and y(t) (and subsequently χ(t))
that contain information about a common source. For instance in
the example presented earlier, there must be a row in E and D with
nonzeros in those entries with indices {1, 2, 3, 7} corresponding to
the sensors acquiring information about source s1(t). Similarly,
another row of E and D should have nonzeros in entries {4, 5, 6, 9},
corresponding to the sensors observing source s2(t). To this end,
we enhance CCA with norm-one and norm-two regularization to
properly induce sparsity in E and D, and cope with the unknown
number of sources M . In the following the ρth row of a matrix A
is denoted by Aρ:, or, (A)(ρ :), while A(α, β) denotes the (α, β)
entry of A. Also, Iq denotes the identity matrix of size q × q.

3. REGULARIZED CCA

To deal with the unknown number of sources the number of rows q in
E and D is selected larger than M . Then, norm-two regularization
is utilized, e.g., see [1, 19], to zero-out the extra rows that are not
needed. Further, to induce entry-wise sparsity in the rows of E and
D and subsequently identify different subsets of entries in χ(t) that
contain information about a source, norm-one regularization terms,
see e.g., [17, 20, 22], are introduced in the standard CCA in (4).
The following regularized CCA framework is considered

(D̂, Ê) = arg minD,EN
−1 ∑N−1

t=0 ∥Ey(t)−Dx(t)− µ̂∥22
+ υ∥EΣ̂yE

T − I||2F + ε∥DΣ̂xD
T − I||2F

+
∑q

ρ=1λE,ρ∥Eρ:||1 +
∑q

ρ=1 λD,ρ∥Dρ:||1
+ ϕD

∑q
ρ=1 ∥Dρ:∥2 + ϕE

∑q
ρ=1 ∥Eρ:∥2 (6)

where the second and third terms in (6) account for the constraints
in (4), while ∥ · ∥1 and ∥ · ∥F denote norm-one and Frobenius norm,
respectively. The sparsity controlling coefficients λE,ρ and λD,ρ

assume positive values and control the number of zero entries in Eρ:

and Dρ:, respectively. The last two Euclidean norm terms induce
group sparsity, which is used to zero-out unnecessary rows in E and
D by adjusting properly the coefficients ϕD > 0 and ϕE > 0.
The number of nonzero rows in E and D will be an estimate of the
number of field sources.

To tackle the problem in (6) its corresponding cost will be split
into smaller minimization tasks involving minimization with respect
to (wrt) one row of E, say Eρ: (or D, say Dρ:) while fixing the rest
entries in E and D to their most up-to-date values. Each of these
minimization subtasks will be tackled using the alternating direction
method of multipliers (ADMM), see e.g., [4, 5], to solve the prob-
lem in (6). ADMM is an efficient technique used to minimize costs
having sparsity-inducing regularization terms, e.g., see [16].

3.1. Algorithm Implementation

The minimization problem in (6) is split into 2q minimization sub-
problems. Each of these minimization subtasks focuses on minimiz-
ing the cost in (6) wrt Dρ: (or Eρ:) for ρ = 1, 2, ..., q, while fixing
the remaining rows of E (or D). Specifically, the minimization sub-
task wrt Dρ: can be written as,

D̂ρ: = arg minDρ:
N−1∥Eρ:Y −Dρ:X∥22 + λD,ρ∥DT

ρ:∥1

+ ϕD∥Dρ:∥2 + ε∥Iq(ρ, :)−Dρ:ΣxD∥22 (7)

where X := [x(0)− µ̂x,x(2)− µ̂x, ...,x(N−1)− µ̂x] ∈ Rpf×N

and Y := [y(0)− µ̂y,y(2)− µ̂y, ...,y(N − 1)− µ̂y] ∈ Rpf×N .
For notational simplicity, we denote Eρ:Y, ΣxD

T and Iq(ρ, :) by
TE

1,ρ, TD
2 and T3,ρ, respectively. First Dρ: is updated while using

the most recent updates from iteration τ and replacing TE
1,ρ with

TE,τ
1,ρ = Eτ

ρ:Y ,and TD
2 with TD,τ

2 = Σx(D
τ )T . Then, D̂τ+1

ρ: can
be obtained as

D̂τ+1
ρ: = arg minDρ:

N−1∥TE,τ
1,ρ −Dρ:X∥22 + λD,ρ∥Dρ:∥1

+ ϕD∥Dρ:∥2 + ε∥T3,ρ −Dρ:T
D,τ
2 ∥22 (8)

The problem in (8) can be converted into the equivalent constrained
minimization problem

(D̂τ+1
ρ: ,bτ+1

ρ ) = arg minDρ:,bρ

1

N
∥TE,τ

1,ρ −Dρ:X∥22 + λD,ρ∥Dρ:∥1

+ ϕD∥bρ∥2 + ε∥T3,ρ −Dρ:T
D,τ
2 ∥22, subj. to bρ = Dρ:, (9)

where bρ is an extra minimization variable introduced to facilitate
applicability of ADMM. ADMM involves updates for Dρ:, bρ and
the Lagrange multiplier vector pρ accounting for the constraint
bρ = Dρ: for multiple iterations. The latter updating iterates are
denoted as D̂τ,k

ρ: , bτ,k
ρ and pτ,k

ρ respectively, while k = 1, 2, . . . ,K
corresponds to the ADMM iteration index. To obtain the updating
recursions the augmented Lagrangian function of (9) is first formed

Lτ (Dρ:,bρ,pρ) = N−1∥TE,τ
1,ρ −Dρ:X∥22 + λD,ρ∥Dρ:∥1 (10)

+ ϕD∥bρ∥2 + ε∥T3,ρ −Dρ:T
D,τ
2 ∥22 + (Dρ: − bρ)pρ

+
c

2
∥Dρ: − bρ∥22

where c is a positive penalty coefficient making (9) strictly convex.
In every iteration, vector Dρ: (or bρ) is updated by minimizing the
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augmented Lagrangian function in (10) while fixing the remaining
vectors bρ and pρ (or Dρ: and pρ) to their most recent updates.
During ADMM iteration k + 1 and coordinate iteration τ + 1 the
following three updating steps take place:

D̂τ,k+1
ρ: = arg minDρ:

N−1∥TE,τ
1,ρ −Dρ:X∥22 + λD,ρ∥Dρ:∥1

+ ε∥T3,ρ −Dρ:T
D,τ
2 ∥22 +Dρ:p

τ,k
ρ +

c

2
∥Dρ: − bτ,k

ρ ∥22 (11)

then bρ is updated while using the updates D̂τ,k+1
ρ: and pτ,k

ρ as

bτ,k+1
ρ = argminbρ

ϕD∥bρ∥2− bρp
τ
ρ,k+0.5c∥D̂τ,k+1

ρ: − bρ∥22 (12)

finally the multiplier is updated using the most recent updates
D̂τ,k+1

ρ: and bτ,k+1
ρ as

pτ,k+1
ρ = pτ,k

ρ + c(D̂τ,k+1
ρ: − bτ,k+1

ρ )T . (13)

Note that after finite K ADMM iterations D̂τ,k+1
ρ: will correspond to

an estimate for D̂τ+1
ρ: in (9), while if K → ∞ then ADMM iterates

satisfy limk→∞ D̂τ,k+1
ρ: = D̂τ+1

ρ: (convergence result in [4]), where
D̂τ+1

ρ: the minimizer in (8). The minimization in (11) can be split
into pf subtasks each of which subtasks involves minimizing (11)
wrt one entry of Dρ:, namely D(ρ, β), while letting the rest of the
entries fixed. After some algebraic manipulations, we obtain

D̂τ,k+1(ρ, β) = arg mind∥ζ
τ,k
ρ,β − dhτ

ρ,β∥22 +
c

2
[d− bτ,k

ρ (β)]2

+ dpτ,k
ρ (β) + λD,ρ|d|, for β = 1, 2, ..., pf, ρ = 1, . . . , q (14)

with ζτ,k
ρ,β:=[ζ1,τ,k

ρ,β , ζ2,τ,k
ρ,β ]T and hτ

ρ,β:=[N−0.5Xβ:,T
D,τ
2,β:]

T , while

ζ1,τ,k
ρ,β := N− 1

2 [TE,τ
1,ρ −

β∑
ℓ=1

D̂τ,k+1(ρ, ℓ)Xℓ: −
pf∑

ℓ=β+1

D̂τ,k(ρ, ℓ)Xℓ:]

ζ2,τ,k
ρ,β := ε0.5[T3,ρ −

β∑
ℓ=1

D̂τ,k+1(ρ, ℓ)TD,τ
2,ℓ: −

pf∑
ℓ=β+1

D̂τ,k(ρ, ℓ)TD,τ
2,ℓ: ]

The solution of the minimization problem in (14) can be expressed
in closed form (e.g., see [15, 17]) as

D̂τ,k+1(ρ, β) = sgn((ζτ,k
ρ,β)

Thτ
ρ,β +

c

2
(bτ,k

ρ (β)−
pτ,k
ρ (β)

c
))(15)

×

∣∣∣∣∣∣ (ζ
τ,k
ρ,β)

Thτ
ρ,β + c

2
(bτ,k

ρ (β)− pτ,k
ρ (β)

c
)

∥hτ
ρ,β∥22 +

c
2

∣∣∣∣∣∣− λD,ρ

2∥hτ
ρ,β∥22 + c


+

,

where (x)+ = max(x, 0).
Using the results in [19] the minimizer of (12) is given as

bτ,k
ρ = c−1Sv((p

τ,k
ρ )T + cDτ,k

ρ: , ϕD) (16)

where Sv(v, ϕ) = [1− ϕ
∥v∥2

]+v.
A similar process can be followed starting from (6), to obtain

updating recursions for Êτ,k(ρ, β). The corresponding quantities
involved in forming Êτ,k(ρ, β) will be denoted as bE,τ,k

ρ and pE,τ,k
ρ

that are the equivalents for bτ,k
ρ and pτ,k

ρ .The updating process in
the regularized (R-) CCA algorithm is tabulated as Algorithm 1.

Algorithm 1: RCCA

Initialize D̂0, Ê0 using the standard CCA solution [6, Chp. 10]. Ini-
tialize {b0

ρ = bE,0
ρ = 0}qρ=1 and {p0

ρ = pE,0
ρ = 0}qρ=1.

for τ = 1, 2, . . . , do
for ρ = 1, 2, . . . , q do
for k = 1, 2, . . . ,K do

Update D̂τ,k(ρ, β) via (15) for β = 1, . . . , pf .
Update bτ,k

ρ via (16).
Update pτ,k

ρ via (13).
end for
end for
Similarly update {Êτ,k(ρ, β)}pfβ=1, {bE,τ,k

ρ ,pE,τ,k
ρ }.

D̂τ+1
ρ: = D̂τ,K

ρ: and Êτ+1
ρ: = Êτ,K

ρ: for ρ = 1, . . . , q.
If ∥D̂τ+1 − D̂τ∥F + ∥Êτ+1 − Êτ∥F < ϵ for a

prescribed tolerance ϵ, then break.
end for

3.2. Selecting the Regularization Coefficients

The RCCA scheme utilizes two different types of regularization co-
efficients. The coefficients ϕD and ϕE control the number of zero
rows in E and D, while the coefficients λE,ρ and λD,ρ control the
sparsity patterns inside the ρth row of matrix E and D, respectively.
Proper selection of these coefficients can ensure that RCCA will re-
cover efficiently the correct number of different sensor groups ac-
quiring information about the field sources which translates to keep-
ing M out of the q rows in E and D. A simple yet effective way
to select the ϕ’s and λ’s is proposed here. To this end, we consider
the case ϕD = ϕE = ϕ since both D and E should have the same
number of nonzero rows corresponding to the number of sources
M . Similarly, λE,ρ = λD,ρ = λρ since the support of Dρ: and
Eρ: should coincide as explained in Sec. 2. Here it is assumed that
M ≥ 1, q > M and there are at least two sensors sensing just noise.

We start by fixing λ’s to a value λ0, ϕ is initialized to a large
value ϕ0 which results all-zero matrices E and D when applying
RCCA. By gradually decreasing ϕ by a small step size ∆ϕ, i.e.,
ϕn = ϕ0 − n∆ϕ, more non-zero rows will appear in E and D. The
ϕ is selected as the first ϕn resulting estimates Ê and D̂ in RCCA
whose rows contains at least two relatively small (close to zero) en-
tries (in accordance with the assumption that at least two sensors
sense noise), and at the same time, the following ϕn+1, ϕn+2, . . .

result estimates Ê and D̂ in RCCA that contain one or multiple rows
which have less than two entries with close-to-zero magnitude.

After selecting ϕ, the sparsity-controlling coefficients λρ are
chosen. Let {λmax

ρ }qρ=1 denote the smallest value of the sparsity con-
trolling coefficients that result the ρth row of D̂ and Ê obtained from
RCCA to be zero. In the first step λmax

ρ is estimated via estimates λ̂m
ρ .

After randomly initializing λ̂m
ρ and applying RCCA the support sets

of the estimates D̂ρ: and Êρ: are checked. If the support sets are
nonempty then λ̂m

ρ is increased by a factor of ω2 > 1. The esti-
mates λ̂m

ρ will keep increasing until RCCA gives an empty support
for D̂ρ: and Êρ: in which case it is certain that λmax

ρ has been reached
or exceeded. If the support sets D̂ρ: and/or Êρ: are empty then λ̂m

ρ

has exceeded λρmax in which case λ̂m
ρ is decreased by a factor of

ω1 ∈ [1 − ϵ, 1). The estimates λ̂m
ρ will be decreased until RCCA

gives a nonempty support for D̂ρ: and Êρ:.
Given the estimate λ̂m

ρ from earlier, the second step is recover-
ing the indices of columns in D and E that are zero, denoted here
as C. Note that the index of a zero column indicates a sensor mea-
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surement acquiring only sensing noise. The estimate λ̂m
ρ is scaled

with factors ω3 < 1 and ω4 < 1, where ω4 << ω3. Two different
zero column index sets, namely C1 (using ω3) and C2 (using ω4),
are obtained after applying RCCA. Since ω4 << ω3 it is expected
that C1 ⊇ C2. The reason for getting two different sets C1 and C2 is
to identify which columns (noisy sensors) in D and E will be zero
for both different scalings of λ̂m

ρ using ω4 and ω3. This way the
columns of E,D that match with entries in x(t),y(t) that contain
information about a source (nonzero columns) can be distinguished
from the columns that correspond to entries in x(t),y(t) with just
sensing noise (zero columns). The last step is to select λ’s that result
estimates for D and E whose zero column index set coincides with
C from the second step. To this end, starting from λ̂m

ρ obtained in
step one we gradually decrease their value by a factor ω5 ∈ [1−ϵ, 1)
until the zero column index set of the D,E estimates in RCCA co-
incides with C. The selection scheme is summarized below as Alg. 2.

Algorithm 2: Coefficient selection

Initilization: ϕ = ϕ0, λD,ρ = λE,ρ = λ0 for ρ = 1, 2, ..., q
−ϕ− selection :
for n = 1, 2, ...J = ⌊ ϕ0

∆ϕ
⌋

ϕn = ϕ0 − n∆ϕ
endfor
Select ϕn such that {ϕj}Jj=n+1 (combined with λ0) in RCCA gives
Ê, D̂ with rows having less than two close-to-zero/zero entries.
−λ-selection:
Step 1): Find {λmax

ρ }qρ=1.
Initialize {λ̂m

ρ > 0}qρ=1 randomly.
while(true)

Find D̂ via RCCA using λ̂m
ρ

If D̂ρ: ̸= 0

Update λ̂m
ρ = ω2λ̂

m
ρ where ω2 > 1

else if D̂ρ: = 0

Update λ̂m
ρ = ω1λ̂

m
ρ , where ω1 < 1. Find Ď via

RCCA with updated λ̂m
ρ

If Ďρ: = 0

Update λ̂m
ρ = ω1λ̂

m
ρ .

else if Ďρ: ̸= 0

λ̂m
ρ = λ̂m

ρ

Break while
endIf

end If
end while

Step 2): Estimate zero column index set (denoted as C) of D
Find zero column index set C1 of D̂ via RCCA using ω3λ̂

m
ρ .

Find set C2 of D̂ via RCCA using ω4λ̂
m
ρ . Set C = C1 ∩ C2.

Step 3): Select {λ̂ρ}qρ=1 to be used
Starting from λ̂ρ,0 = λ̂m

ρ decrease λρ,n = ω5λρ,n−1 until RCCA
gives D̂ whose zero column index set matches C.

In the numerical results later on, we set ϕ0 = 5, ∆ϕ = 0.05, λ0 =
0.1, ω1 = 0.75, ω2 = 1.5, ω3 = 0.1, ω4 = 0.01, ω5 = 0.95.

4. NUMERICAL RESULTS

The probability of correctly clustering sensor data in the right num-
ber of groups (M here) based on their source content is numerically
evaluated here for: i) RCCA; ii) the K-means clustering scheme
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Fig. 1. Probability of correctly clustering sensors for the RCCA vs.
number of data N in a linear (-L) and nonlinear (-NL) setting.

in [9, 14] that estimates the unknown number of clusters via se-
quential extraction of anomalous patterns in the data, abbreviated as
ik-Means (intelligent K-Means); and iii) the sparse CCA approach
in [20] abbreviated here as PMD.

We consider a setting with M = 2 sources and p = 15 sen-
sors. The corresponding mappings hm,j in (1) are summarized in
the following matrices Gl = [gm,j(·)] and Gnl = [gm,j(·)] for a
linear and nonlinear model in (1) respectively, while the (m, j)th
entry of Gl (or Gnl) corresponds to gm,j(sm(t)). Specifically,
Gl := G⊙As and Gnl := G⊙Bs, where ⊙ denotes entry-wise
product and

As :=

[
s1(t)11×5 01×5 01×5

01×5 s2(t)11×5 01×5

]
Bs :=

[
s1(t) s1.11 (t) s1.21 (t) s1.31 (t) s1.41 (t) 01×5 01×5

01×5 s2(t) s1.12 (t) s1.22 (t) s1.32 (t) s1.42 (t) 01×5

]
while 11×5,01×5 denote the 1× 5 all-ones and all-zeros vectors re-
spectively and the entries of G are normally distributed. The ma-
trices Gl and Gnl represent a setting where source s1(t) is ob-
served by sensors {1, 2, 3, 4, 5}, source s2(t) is observed by sensor
{6, 7, 8, 9, 10} and the rest {11, 12, 13, 14, 15} acquire just noise.

Fig. 1 depicts the probability of correctly clustering the sensor
measurements in the right number of groups versus the number of
data samples N acquired across each sensor. RCCA is applied for
K = 10 ADMM iterations and selecting q = 4, 5 or 7, the pa-
rameters in PMD were selected on a trial and error basis to get the
best observed performance while there are no parameters to set on
iK-Means. Clearly, it can be seen that the probability achieved by
RCCA is higher than that of PMD and iK-Means for both the linear
(-L) and nonlinear (-NL) settings. Note also that the performance of
RCCA is not really affected by how q, the number of nonzero rows
of E,D, is selected as long as is larger than M = 2. This advocates
the potential of RCCA to correctly cluster sensor data based on their
information content even when M is unknown.

5. CONCLUDING REMARKS

The standard CCA framework was augmented with norm-one and
norm-two regularization terms that facilitate estimation of the num-
ber of field sources and clustering of the sensor data based on their
information content. ADMM and coordinate descent techniques
were employed to tackle the associated minimization problem, while
numerical tests demonstrate the advantages of correctly recovering
different sensor groups over existing alternatives.
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