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ABSTRACT
In solving the problem of sparse recovery, non-convex techniques
have been paid much more attention than ever before, among which
the most widely used one is �p minimization with p ∈ (0, 1). It has
been shown that the global optimality of �p minimization is guaran-
teed under weaker conditions than convex �1 minimization, but little
interest is shown in the local optimality, which is also significant s-
ince practical non-convex approaches can only get local optimums.
In this work, we derive a tight condition in guaranteeing the local
optimality of �p minimization. For practical purposes, we study the
performance of an approximated version of �p minimization, and
show that its global optimality is equivalent to that of �p minimiza-
tion when the penalty approaches the �p “norm”. Simulations are
implemented to show the recovery performance of the approximated
optimization in sparse recovery.

Index Terms— Sparse recovery, �p minimization, non-convex
optimization, local optimality, global optimality.

1. INTRODUCTION

In many important applications such as source localization [1], im-
age denoising [2], and face recognition [3], the key issues can be
viewed as finding sparse solutions to underdetermined systems of
linear equations. Mathematically, suppose x∗ ∈ R

N is an unknown
sparse signal that we wish to recover, and it is observed through a
sensing matrix A ∈ R

M×N with M < N ,

y = Ax∗. (1)

To determine the sparse signal from the sensing matrix A and the
measurement vector y, a natural idea is to adopt �0 minimization

argmin
x

‖x‖0 subject to Ax = y (2)

where ‖x‖0 simply counts the nonzero entries of x. Since �0 mini-
mization is NP-hard [4], (2) is computationally intractable.

To tackle this problem, some works relax the non-convex dis-
continuous �0 “norm” to convex �1 norm [5, 6] and show that, under
some relaxed conditions, the optimum solutions to �0 minimization
and �1 minimization

argmin
x

‖x‖1 subject to Ax = y (3)

are the same [7–9]. �1 minimization can be reformulated as a linear
program and therefore can be solved efficiently [10].
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Some other works try to find a tradeoff between the computa-
tional complexity and the recovery performance, and introduce �p
minimization

argmin
x

‖x‖pp subject to Ax = y (4)

where ‖x‖p = (
∑N

i=1 |xi|p)1/p with 0 < p < 1 [11–13]. It has
been empirically shown that �p minimization tends to outperform
convex �1 minimization in various aspects such as less number of
measurements needed, larger sparsity level of signals allowed, and
better denoising performance [12–16]. But since �p minimization is
non-convex, its local optimality and global optimality should both
be carefully studied.

The global optimality of �p minimization has been thorough-
ly studied before. Based on restricted isometry constant, sufficient
conditions to guarantee the global optimality of �p minimization are
obtained in a bunch of works [12, 13, 15]. Some other works derive
tight conditions in indicting the performance with null space prop-
erty [8, 11, 12, 17]. In [11], the global optimality of a class of non-
convex optimizations besides �p minimization is derived, but their
comparison with �p minimization is not discussed. When dealing
with practical algorithms, [15] considers an approximated version of
�p minimization, and shows that under the same sufficient condition
as that guaranteeing the global optimality of �p minimization, the ap-
proximated optimization also returns the sparse signal. But since this
work only derives the sufficient condition, it is still unclear whether
the approximation would result in performance degeneration.

The main contribution of this paper is twofold. First, we discuss
the local optimality of �p minimization, i.e., condition under which
the sparse signal is the local optimum, which has rarely been con-
sidered in previous works. This is also of great importance since
solving �p minimization is NP-hard and all feasible algorithms can
only find local optimums [18]. Second, to avoid the infinite deriva-
tive of �p “norm” around the origin, we consider an approximated
version of �p minimization, and study its performance equivalence
with �p minimization in the aspect of global optimality.

2. PRELIMINARY

The sparse signal recovery problems introduced in Section 1 can be
summarized as

argmin
x

J(x) subject to Ax = y (5)

where J(x) =
∑N

i=1 F (|xi|) and F (·) belongs to a class of sparse-
ness measures [11], i.e., the following Definition 1.

Definition 1. (Definition 1 from [11]) The sparseness measure F :
[0,+∞) → [0,+∞) satisfies
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1) F (0) = 0 and F (·) is not identically zero;
2) F (·) is non-decreasing;
3) F (x)/x is non-increasing in x ∈ (0,+∞).

Remark 1. It’s easy to check that �0, �1, and �p minimizations are
special cases of problem (5).

Some quantities are introduced in literatures to characterize the
performance of sparse recovery problems and algorithms, such as
spark [7], mutual coherence [19], restricted isometry constant [20],
and null space constant [11, 17]. In this paper we adopt spark and
null space constant introduced as follows. Let N (A) denote the null
space of A and zS be the vector generated by keeping the entries of
z indexed by S and setting the rest entries to zeros.

Definition 2. (Definition 1 from [7]) The spark of a matrix A, de-
noted as Spark(A), is the smallest number of columns from A that
are linearly dependent.

Definition 3. (Summarized from [11, 17, 21]) For J(·) formed by
F (·) satisfying Definition 1, define null space constant γ(J,A,K)
as the smallest quantity such that

J(zS) ≤ γ(J,A,K)J(zSc) (6)

holds for any set S ⊆ {1, 2, . . . , N} with #S ≤ K and for any
vector z ∈ N (A).

Based on null space constant, the global optimality of problem
(5) can be characterized as follows.

Proposition 1. (Theorem 2, 3, and 5 from [11]) For J(·) formed by
F (·) satisfying Definition 1,

1) Assume x∗ is K-sparse and y = Ax∗ with A satisfying
γ(J,A,K) < 1. Then x∗ is the global optimum to (5).

2) Assume that the sensing matrix A satisfies γ(J,A,K) > 1.
Then there exists a K-sparse signal x∗ and y = Ax∗ such
that x∗ is not the global optimum to (5).

3) γ(�0,A,K) ≤ γ(J,A,K) ≤ γ(�1,A,K).

Remark 2. According to Proposition 1.1)-2), the null space constant
is a tight quantity in indicating the global optimality of problem (5),
especially �0, �1, and �p minimizations.

Remark 3. Proposition 1.3) reveals that among all problems with the
form (5), the global optimality of �0 minimization is guaranteed un-
der the weakest condition while that of �1 minimization is opposite.

3. MAIN CONTRIBUTION

In this section, we introduce the main theoretical contributions of
this paper including the local optimality of �p minimization and the
global optimality of an approximated version of �p minimization. To
begin with, we consider a slightly more generalized class of penalties
than �p “norm”.

Definition 4. Let J be the set of penalties J(·) formed by F (·)
satisfying Definition 1 and that F (x)/x tends to positive infinity as
x approaches zero.

Remark 4. It’s easy to check that ‖ · ‖0 ∈ J and ‖ · ‖pp ∈ J with
0 < p < 1, but ‖ · ‖1 �∈ J .

When discussing the performance of �p minimization (0 < p <
1), most if not all works mainly consider the global optimality and
neglect the local optimality. The latter is also quite important since
any feasible non-convex algorithm for �p minimization can only find
its local optimum [18]. The following two theorems fill this research
gap by deriving a necessary and sufficient condition.

Theorem 1. Assume x∗ is K-sparse and y = Ax∗ with A satisfy-
ing that Spark(A) ≥ K + 1. Then for any J(·) ∈ J , x∗ is a local
optimum to problem (5).

Proof. See Section 4.1.

Theorem 2. Assume that the sensing matrix A satisfies Spark(A) =
K. Then there exists a K-sparse signal x∗, if y = Ax∗, then for
any J(·) formed by F (·) satisfying Definition 1, x∗ is not a local
optimum to problem (5).

Proof. See Section 4.2.

Remark 5. According to Theorem 1 and Theorem 2, Spark(A) ≥
K+1 is a necessary and sufficient condition for the local optimality
of both �0 and �p minimizations (0 < p < 1). An intuitive explana-
tion for this is that �p “norm” looks locally similar to �0 “norm” at
the origin.

Remark 6. According to Proposition 1.1)-2), the necessary and
sufficient condition for the global optimality of �0 minimization is
γ(�0,A,K) < 1, which is equivalent to Spark(A) ≥ 2K + 11.
Therefore, for non-convex �0 and �p minimizations, local opti-
mality is strictly weaker than global optimality, which means that
even when the sparse signal is not the global optimum, you still
get a chance to find it as long as you start with a sufficiently good
initialization. This differs from convex �1 minimization obviously.

Though the global optimality of �p minimization is guaranteed
under weaker conditions than �1 minimization [17], the infinite
derivative of �p “norm” around the origin may cause trouble in de-
signing effective and robust algorithms. To address this problem,
smoothed version of �p “norm” is adopted, for example,

Fp,σ(|x|) = |x|
(|x|+ σ)1−p

σ→0+−−−−→ |x|p, p ∈ [0, 1). (7)

When p = 0, this approximation is related with reweighted �1 min-
imization [24] where |x| in the denominator of (7) is approximated
by the previous estimate. When 0 < p < 1, this approximation
is connected to the reweighted algorithm introduced in [15] where
|x| in the denominator is also approximated as aforementioned. The
global optimality of the corresponding approximated optimization
can be revealed by the following theorem.

Theorem 3. Assume x∗ is K-sparse and y = Ax∗ with A satis-
fying γ(�p,A,K) < 1, p ∈ [0, 1). Then the global optimum xσ of
the problem

argmin
x

Jp,σ(x) :=

N∑
i=1

Fp,σ(|xi|) subject to Ax = y (8)

satisfies limσ→0+ ‖xσ − x∗‖2 = 0.

Proof. See Section 4.3.

Remark 7. Theorem 2 in [21] and Theorem 3 above are two im-
portant results in exhibiting the performance of problem (8) from
two different perspective of views: the former indicates the perfor-
mance of (8) for (A,K), while the latter is for (A,x∗). Specifical-
ly, Theorem 2 in [21] reveals that for fixed σ > 0, γ(Jp,σ,A,K) =
γ(�1,A,K). This means that guaranteeing any K-sparse signal to

1The condition Spark(A) ≥ 2K+1 has been shown to imply the global
optimality of �0 minimization in many works such as [7, 22, 23].
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be the global optimum to (8) is equivalent to guaranteeing any K-
sparse signal to be the global optimum to �1 minimization. But no-
tice that the condition in Theorem 3 is γ(�p,A,K) < 1, which
reveals that for fixed x∗, decreasing σ would indeed improve the re-
covery performance, which approaches the performance of �p mini-
mization in the limiting scenario.

Remark 8. A similar result is presented in Proposition 4.3 of [15]
with two main differences. First, they consider a different approx-
imated penalty ‖x‖pp ≈ ∑N

i=1(|xi| + ε)p. Second, their condition
is based on restricted isometry constant which is a sufficient condi-
tion, while in our result the condition is based on null space constant
which is a tight quantity in characterizing the global optimality.

4. PROOF

4.1. Proof of Theorem 1

Proof. We need to prove that there exists a neighborhood B(x∗)
of x∗ such that for any x ∈ B(x∗) \ {x∗} satisfying y = Ax,
J(x) > J(x∗). Define m = min{|x∗

i | : x∗
i �= 0} as the small-

est nonzero magnitude of the entries of x∗, and σK
min(A) as the s-

mallest singular value taken over all K-column submatrices of A.
Since Spark(A) ≥ K + 1, any K columns of A are linearly in-
dependent, and σK

min(A) > 0. Since F (x)/x is non-increasing in
x ∈ (0,+∞) and tends to positive infinity as x approaches zero,
there exists r ∈ (0,m) such that

F (r)/r > (F (m)/m)(
√
K‖A‖2/σK

min(A)). (9)

We choose B(x∗) as the �2-ball centered at x∗ with radius r.

For any x ∈ B(x∗) \ {x∗} satisfying y = Ax, let z = x− x∗.
Then ‖z‖2 ≤ r and z ∈ N (A) \ {0}. Defining set T = {i : x∗

i �=
0} as the support set of x∗, it’s easy to see that

J(x)−J(x∗) =
∑
i �∈T

F (|zi|)+
∑
i∈T

(F (|x∗
i +zi|)−F (|x∗

i |)). (10)

First, since |zi| ≤ ‖z‖2 ≤ r and F (x)/x is non-increasing in x ∈
(0,+∞), F (|zi|) ≥ (F (r)/r)|zi|, therefore

∑
i �∈T

F (|zi|) ≥ (F (r)/r)‖zTc‖1. (11)

Second, for i ∈ T , since |zi| ≤ r < m ≤ |x∗
i |, the second term on

the right hand side of (10) is no less than

−
∑
i∈T

(F (|x∗
i |)− F (|x∗

i | − |zi|)) ≥−
∑
i∈T

(F (|x∗
i |)/|x∗

i |)|zi|

≥ − (F (m)/m)‖zT ‖1. (12)

Substituting (11) and (12) into (10) yields

J(x)− J(x∗) ≥ (F (r)/r)‖zTc‖1 − (F (m)/m)‖zT ‖1. (13)

Since Az = 0, the equality AzT = −AzTc holds and hence
‖AzT ‖2 = ‖AzTc‖2. It can be calculated that

‖AzT ‖2 ≥ σK
min(A)‖zT ‖2 ≥ σK

min(A)‖zT ‖1/
√
K, (14)

‖AzTc‖2 ≤ ‖A‖2‖zTc‖2 ≤ ‖A‖2‖zTc‖1. (15)

Since any K columns of A are linearly independent, z is at least
(K + 1)-sparse, and zTc �= 0. Therefore, according to (13), (14),

(15), and the definition of r, it can be derived that

J(x)− J(x∗)

≥ ‖zTc‖1 (F (r)/r − (F (m)/m)(‖zT ‖1/‖zTc‖1))
≥ ‖zTc‖1

(
F (r)/r − (F (m)/m)(

√
K‖A‖2/σK

min(A))
)

> 0.

To sum up, we have proved that x∗ is a local optimum to (5).

4.2. Proof of Theorem 2

Proof. Since Spark(A) = K, A has K linearly dependent column-
s, and there exists a K-sparse vector z ∈ N (A) \ {0}. Set x∗ = z,
then y = Ax∗ = 0. For any λ ∈ (0, 1), y = A(x∗ − λz), and

J(x∗−λz) =

N∑
i=1

F ((1−λ)|x∗
i |) ≤

N∑
i=1

F (|x∗
i |) = J(x∗). (16)

It is obvious that x∗ is not a local optimum to (5).

4.3. Proof of Theorem 3

Proof. First, we prove the result for p ∈ (0, 1). For any ε > 0,
define

σ0 =
ε(

1+γ(�p,A,K)

1−γ(�p,A,K)
N
)1/p

> 0. (17)

Then for any σ ≤ σ0, let xσ be the global optimum of problem (8),
and define Iσ as the set of index i satisfying |xσ

i | ≥ σ0. Due to the
global optimality of xσ ,

Jp,σ(x
σ) ≤ Jp,σ(x

∗) ≤ ‖x∗‖pp. (18)

It is easy to see that

Jp,σ(x
σ) =

N∑
i=1

Fp,σ(|xσ
i |) ≥

∑
i∈Iσ

Fp,σ0(|xσ
i |). (19)

For any i ∈ Iσ , since |xσ
i | ≥ σ0,

|xσ
i |

(|xσ
i |+ σ0)1−p

=
|xσ

i |p
(1 + σ0

|xσ
i | )

1−p
≥

(
1− σ0

|xσ
i |
)
|xσ

i |p (20)

holds, therefore,∑
i∈Iσ

Fp,σ0(|xσ
i |) ≥

∑
i∈Iσ

|xσ
i |p − σ0

∑
i∈Iσ

|xσ
i |p−1. (21)

Combining (18), (19), and (21), we can derive that

‖xσ‖pp − ‖x∗‖pp ≤
∑
i �∈Iσ

|xσ
i |p + σ0

∑
i∈Iσ

|xσ
i |p−1. (22)

According to the definition of Iσ and p ∈ (0, 1), the right hand side
of (22) is less than or equal to

(N −#Iσ)σp
0 + σ0#Iσσp−1

0 = Nσp
0 . (23)

As for the left hand side of (22), define T as the support set of x∗

and zσ = xσ − x∗ ∈ N (A). Then the left hand side of (22) equals

‖xσ
Tc‖pp +

(‖xσ
T ‖pp − ‖x∗

T ‖pp
) ≥‖zσTc‖pp − ‖zσT ‖pp
≥1− γ(�p,A,K)

1 + γ(�p,A,K)
‖zσ‖pp (24)

3598



log10(ω)

K

p = 0.9

0 2 4

20

40

60

log10(ω)
K

p = 0.5

0 2 4

20

40

60

20%

40%

60%

80%

100%

log10(ω)

K

p = 0.2

0 2 4

20

40

60

log10(ω)

K
p = 0

0 2 4

20

40

60

20%

40%

60%

80%

100%

Fig. 1. The figure shows the successful recovery probability of (8)
using PGG [21] with different p, non-convexity ω = (1− p)/σ, and
sparsity level K. The solid line represents the maximum sparsity
level that guarantees 99% successful recovery versus ω. The dotted
line indicates the maximum sparsity level that guarantees 99% suc-
cessful recovery of �1 minimization, which serves as a benchmark.

where the last inequality is due to the definition of null space con-
stant γ(�p,A,K). Therefore,

‖zσ‖pp ≤ 1 + γ(�p,A,K)

1− γ(�p,A,K)
Nσp

0 . (25)

According to Lemma 4.5 in [17], since 0 < p < 2,

‖zσ‖2 ≤ ‖zσ‖p ≤
(
1 + γ(�p,A,K)

1− γ(�p,A,K)
N

)1/p

σ0 = ε. (26)

Therefore, we have proved that when p ∈ (0, 1), for any ε > 0, there
exists σ0 > 0 such that for any σ ≤ σ0, ‖xσ − x∗‖2 ≤ ε, which
implies the result. As for the case when p = 0, similar argument as
the proof of Theorem 1 in [21] also leads to the desired result.

5. NUMERICAL SIMULATION

We demonstrate two experiments to test the recovery performance
of optimization (8). The algorithm we adopt is the projected gener-
alized gradient (PGG) method proposed in [21]. Initialized as least
squares solution, in each iteration PGG first update along the nega-
tive gradient of penalty with step size κ, and then projected to the
affine subspace {x : Ax = y}. To accelerate convergence with
favourable accuracy, we vary step size κ dynamically: initialized as
10−2, reduced by a half every 100 iterations, until less than 10−6.
The sensing matrix A is of size 128× 256, with i.i.d. Gaussian en-
tries of zero mean and variance 1/128. The nonzero entries of sparse
signal x∗ are i.i.d. Gaussian with zero mean, and x∗ is normalized
to have unit �2 norm.

The first experiment tests the recovery performance of optimiza-
tion (8) using PGG with different choices of p and σ. Following [21],
the non-convexity of the penalty is defined as ω = (1−p)/σ. There-
fore, with fixed p, σ → 0+ is equivalent to ω → +∞. Fig. 1 shows
the successful recovery probability. The non-convexity ω increases
from 10−1 to 104 with common ratio 100.25, and the sparsity level

20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

K

S
uc

es
sf

ul
 R

ec
ov

er
y 

P
ro

ba
bi

lit
y

L1
OMP
CoSaMP
TST
RL1
IRLS
SL0
ISL0
GAMP
PGG−Lp

Fig. 2. The figure demonstrates the recovery probability of different
algorithms versus sparsity level K.

K increases from 1 to 64 with step size 1. If the recovery SNR is
higher than 40dB, this recovery is regarded as a success. The sim-
ulation is repeated 500 times to calculate the recovery probability.
The solid line represents the maximum sparsity level that guarantees
99% successful recovery versus ω (or equivalently, σ). The dotted
line indicates the maximum sparsity level that guarantees 99% suc-
cessful recovery of �1 minimization, which serves as a benchmark.
As can be seen, when non-convexity increases, its recovery perfor-
mance increases from that of �1 minimization, and decreases when
the non-convexity is sufficiently large. This coincides with Theo-
rem 3 in [21] that the non-convexity should be smaller than a thresh-
old to guarantee the convergence of algorithm. Among all the four
choices of p, p = 0.5 is less sensitive to the choice of ω while still
maintains good recovery performance.

In the second experiment, the recovery performance of optimiza-
tion (8) using PGG is compared with some reference algorithms, in-
cluding �1-magic [6], OMP [25], CoSaMP [26], TST [27], RL1 [24],
IRLS [14], SL0 [28], ISL0 [29], and GAMP [30]. For PGG solving
(8), set p = 0.5 and non-convexity ω = (1 − p)/σ = 101.75. The
parameters of reference algorithms are set as recommended, while
CoSaMP and GAMP further require the true sparsity level K, and
GAMP additionally needs the distributions of both sensing matrix
and nonzero entries of x∗. The recovery probability of different al-
gorithms versus K is demonstrated in Fig. 2. IRLS and PGG share
similar performance since they both set p = 0.5, though different
approximations and updating strategies are adopted. It’s not surpris-
ing that GAMP is the best since it needs the most information.

6. CONCLUSION

For the rarely studied local optimality of �p minimization, this pa-
per derives a tight condition in guaranteeing any K-sparse signal to
be a local optimum of �p minimization, which differs significantly
from that of convex �1 minimization. For the approximated version
of �p minimization, its recovery performance is shown to approach
that of �p minimization in the limiting scenario. Experiments are
implemented to test the recovery performance of the approximated
optimization under different parameter settings, and it’s among the
best compared with other reference algorithms.
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