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ABSTRACT

Stochastic optimization finds wide application in signal processing,
online learning, and network problems, especially problems process-
ing large-scale data. We propose an Incremental Constraint Av-
eraging Projection Method (ICAPM) that is tailored to optimiza-
tion problems involving a large number of constraints. The ICAPM
makes fast updates by taking sample gradients and averaging over
random constraint projections. We provide a theoretical convergence
and rate of convergence analysis for ICAPM. Our results suggests
that averaging random projections significantly improves the stabil-
ity of the solutions. For numerical tests, we apply the ICAPM to an
online classification problem and a network consensus problem.

Index Terms— Stochastic Optimization, Large Scale Optimiza-
tion, Random Projection Method, Incremental Constraint Projection
Method

1. INTRODUCTION

Stochastic Optimization (SO) method is widely used in machine
learning (see [3,4]), online learning (see [2,15,16]) and signal recon-
struction (see [17–19]). It is designed to deal with objective function
that involves stochastic noise or can be written as the sum of many
component functions. In practical big-data-based problems, stochas-
tic optimization method often exhibits fast or even optimal rate of
convergence. However, most development on SO focused merely on
unconstrained optimization problems.

In real world, most optimization problems are constrained, in
which the decision variable x must lie within in a feasible set X .
Feasibility problem is by itself an important subject in signal pro-
cessing (see [20–22]). When the feasible set X = ∩m

i=1Xi involves
many constraint sets, the optimization problems become substan-
tially harder than unconstrained ones.

Motivated by these practical challenges with constraints, we
consider the following problem (see [8, 9]):

min
x

{
F (x) = E[f(x; v)]

}
s.t. x ∈ X = ∩m

i=1Xi

(1)

where F : ℜn 7→ ℜ, f(·; v) : ℜn 7→ ℜ are real-valued convex func-
tions, the constraints Xi are convex closed sets, and v is a random
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variable. For solution of problem (1), one may consider the Gradi-
ent Projection Method (see [5–7]), in which each iteration makes a
stochastic gradient update and takes a projection on X . This method
has nice theoretical convergence guarantee. However, it runs into
difficulty when X is as complicated as X = ∩m

i=1Xi, in which case
calculating the projection on X becomes computationally expensive.

For faster solution of problem (1) that accounts for the difficult
constraints, an efficient solution is the Incremental Constraint Pro-
jection Method (ICPM) (see [8,9] and Algorithm 1). In its projection
step, ICPM randomly picks an Xi from all constraints and takes a
projection onto Xi. This allows the algorithm to process one con-
straint Xi at a time using cheap iteration, making it suitable for on-
line learning. However, random constraint projection induces addi-
tional variance, which may adversely affect the algorithm’s stability.

In this paper, we aim to improve the rate of convergence and sta-
bility of ICPM. We propose a new algorithm, namely the Incremen-
tal Constraint Averaging Projection Method (ICAPM). At each iter-
ation, ICAMP processes a number of randomly selected constraints,
and averages over multiple random constraint projection steps. We
prove that the ICAMP converges almost surely to a global optimal
solution, regardless of the initial solution. More importantly, we an-
alyze the convergence rate and stability of the ICAMP. We show
that the variance of solution is indeed reduced by averaged projec-
tion, and we show that the optimization error decreases at a rate of
O(1/k) with high probability. Then we apply the proposed ICAMP
to an SVM problem and a network estimation problem, in which
the algorithm’s empirical performances strongly support our earlier
analysis.

Outline Section 2 introduces the basic notation and reviews the
ICPM algorithm. Section 3 introduces the ICAPM algorithm.
Section 4 presents our main convergence and stability results for
ICAPM. Section 5 describes two applications of ICAPM and sec-
tion 6 gives the simulation results.

2. PRELIMINARIES

For solution of problem (1), we consider the simulation setting
where:

• For a given x, we can obtain an unbiased sample gradient or
subgradient of F (x) = E[f(x; v)] .

• From the collection of constraints X1, . . . , Xm, we can ob-
tain one or multiple constraint sets, which are sampled ac-
cording to some probability distribution.

Under this simulation setting, the ICPM is given by Algorithm 1. We
summarize the parameters and notations of Algorithm 1 as follows:
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Algorithm 1: Incremental Constraint Projection Method
(ICPM)

Choose an arbitary initial point x0 ∈ ℜn;
for k = 0, 1, 2, . . . do

(1) Sample a random (sub)gradient ∇̃f(xk; vk);
(2) Sample ωk from the set of constraints
X1, . . . , Xm.(3) Calculate xk+1 as:

xk+1 = Πωk [xk − αk∇̃f(xk; vk)] ; (2)

• αk denotes the step size. We often take αk = k−α, where
α ∈ [0.5, 1].

• ∇̃f(x; v) ∈ ∂xf(x; v) denotes a subgradient of function
f(·; v) at the point x.

• Πωky := argminx∈ωk ∥x − y∥ denotes the Euclidean pro-
jection of y on the convex set ωk.

At every iteration, the ICPM processes a single sample gradient and
a single sample constraint. Assuming that projecting onto a single
Xi is easy, the ICPM can be implemented efficiently. For example,
when X is a polyhedron and each Xi is a halfspace, the projection
on Xi has a simple analytical form.

3. ICAPM ALGORITHM

In order to improve the stability of random projection, we propose
the new algorithm ICAPM as given by Algorithm 2. At each it-
eration of ICAPM, we first take a stochastic gradient descent step
starting from xk, then we sample a number of constraints ωk,i, i =
1, 2, . . . ,Mk, and take the average of the projections as the next it-
erate xk+1. It is easy to see that the proposed ICAPM contains the
ICPM as a special case when Mk = 1 for all k. See Figure 1 for
graphical visualization of the ICAPM procedure. By averaging over
random projections, we expect to reduce the variance in iterates and
to potentially improve the algorithm’s convergence rate.

Intuitively, by taking average of random projections, we may re-
duce the variance at every iteration and keep the next iterate concen-
trated around its expectation (see Theorem 2 for a formal statement).
As illustrated by Figure 1, this prevents the next iterate xk+1 from
randomly jumping into a distant constraint set. While improving the
stability of iterates, the averaging scheme is computationally effi-
cient, as calculating each random projection still involves only one
simple set Xi.

4. CONVERGENCE ANALYSIS

4.1. Convergence

Suppose there exists at least one optimal solution x∗ to problem (1)
to problem (1), i.e.,

E[f(x; v)] ≥ E[f(x∗; v)], ∀ x ∈ ∩m
i=1Xi.

In this section, we consider the convergence of iterates xk generated
by ICAPM to the set of optimal solutions. We define

Fk := {vt, ωt,i, xt, yt | |t = 1, 2, . . . , k − 1, i = 1, 2, . . . ,Mk}

as the collection of random variables that are revealed up to the kth
iterations. Before starting the analysis, we gives some basic assump-
tions on F (x), {Xi} and the sampling scheme.

Algorithm 2: Incremental Constraint Averaging Projection
Method (ICAPM)

Choose an arbitary x0 ∈ ℜn and positive integers {Mk};
for k = 0, 1, 2, . . . do

(1) Sample a random (sub)gradient ∇̃f(xk; vk);
(2) Update using a gradient descent:

yk+1 = xk − αk∇̃f(xk; vk) ; (3)

(3) Sample Mk constraints {ωk,i}Mk
i=1 independently

from {Xi}mi=1 according to a uniform distribution.
(4) Calculate xk+1 as the averages of random
projections:

xk+1 =
1

Mk

Mk∑
i=1

Πωk,iyk+1 ; (4)
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Fig. 1. Graphical visualization of the ICAPM algorithm

Assumption 1. (Basic Assumptions)

(a) The objective function F (x) is convex and has bounded (sub)gradients.

(b) There exists a constant scalar η such that for any x ∈ ℜn:

∥x−ΠXx∥2 ≤ η max
i=1,...,m

∥x−Πix∥2. (5)

(c) The sample (sub)gradients are conditionally unbiased: for any
x ∈ ℜn,

E[∇̃f(x, vk)|Fk] = ∇̃F (x). (6)

Our first main result establishes that the stochastic algorithm,
ICAMP, converges with probability 1 to an global optimum, starting
from an arbitrary initial solution.

Theorem 1 (Almost Sure Convergence). Suppose that the sequence
{xk} is generated by ICAPM (Algorithm 2). Let Assumption 1 hold,
and let the stepsize αk satisfy:

∞∑
k=0

αk = ∞,
∞∑

k=0

α2
k < ∞. (7)

Then {xk} converges almost surely to a random point in the set of
optimal solutions for problem (1).
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Proof. The key step is to analyze the relation between E[∥xk+1 −
x∗∥2|Fk] and ∥xk −x∗∥2. Then we use a coupled supermartingale
convergence theorem (see Section 3 of [8]) to prove that xk con-
verges almost surely to some optimal solution. We refer to [1] for
the complete proof analysis.

4.2. Convergence Stability

We consider the stability of ICAMP in terms of the conditional vari-
ance V ar[xk+1|Fk] associated with each iteration. We obtain the
following result:

Theorem 2 (Reduced Variance). Let Assumption 1 hold. Suppose
that {xk} is generated by ICAPM (Algorithm 2), we can give an
upper bound on the conditional variance per iteration:

V ar[xk+1|Fk] ≤
1

Mk
16∥xk −ΠXxk∥2 +

(
1

Mk
64 + 2

)
D2α2

k,

(8)
where D is a scalar such that f(xk, vk) ≤ D with probability 1,
∥xk − ΠXxk∥2 is the distance from xk to the feasible set X , and
Mk is the sample number of constraints at the kth iteration.

Proof. The key idea is to leverage the independency of multiple con-
straint sets ωk,i to obtain a reduced variance. This analysis works for
both ICPM and ICAPM. Please see [1] for the complete proof.

This result implies that: the conditional variance diminishes to 0
as xk converges, and more importantly, it is controllable via adjust-
ing Mk. Note that this proposition also holds for ICPM when we let
Mk = 1 for all k.

From Theorem 2, we notice that the conditional variance con-
sists of two parts: the first part (1/Mk)(16∥xk − ΠXxk∥2 +
64D2α2

k) is caused by randomness in selection of constraints ωk,
and the second part 2D2α2

k is caused by randomness in the sample
gradients f(·; vk). By averaging over random projection, ICAPM
is able to reduce the variance introduced by random constraints
selection.

4.3. Convergence Rate with High Probability

Now we present our rate of convergence result. Assuming strong
convexity and zero noise in gradients, we obtain the following error
bound that holds with high probability.

Theorem 3 (Convergence Rate). Let Assumption 1 hold, let F be
a σ-strongly convex function, and let f(x; v) = F (x) for all v.
Suppose that {xk} is generated by ICAPM with the stepsize αk =

1
k+1

, then there exist constants C1, C2 > 0 such that for any T ≥ 0:

∥xk − x∗∥2 ≤ C1

k + 1
, ∀ 0 ≤ k ≤ T, (9)

with probability at least
T∏

k=1

(
1− C2

Mk

)
.

Proof. First we analyze the relation between E[∥xk+1 − x∗∥2|Fk]
and ∥xk − x∗∥2. Then we use the Chebyshelv Inequality to obtain
an inequality relation between ∥xk+1 − x∗∥2 and ∥xk − x∗∥2 that
holds with high probability. By applying the inequality recursively
for k = 0, . . . , T , we obtain (9). Please see [1] for the complete
proof.

Algorithm 3: ICAPM for SVM

Choose an arbitary initial point ϕ0 ∈ ℜn, b0 ∈ ℜ;
for k = 0, 1, 2, . . . do

(1) Gradient discent:

ϕk+1/2 = ϕk − 1

k + 1
ϕk ; (11)

(2) Sample M training points xωk,1 , . . . , xωk,M and
their labels yωk,1 , . . . , yωk,M from the total m points;
(3) Take the average of random projections:

∆i =
max{0, 1− yωk,i(ϕ

′
k+1/2xωk,i + bk)}

1 + ∥xωk,i∥2

ϕk+1 = ϕk+1/2 +
1

M

M∑
i=1

∆iyωk,ixωk,i

bk+1 = bk +
1

M

M∑
i=1

∆iyωk,i ;

(12)

From the preceding result, we note that the probability of satis-
fying the error bound is large when Mk is large. This suggests that
taking averages of random projection indeed improves the stability.
For a given T , we may choose Mk to be on the order of min{T,m}
and make the probability arbitrarily close to 1. This suggests that, in
order to ensure ∥xT − x∗∥2 ≤ O(1/T ) with probability close to 1,
we need O(T 2) random projections.

5. APPLICATIONS FOR ICAPM

5.1. SVM in Online Learning

Consider a classification problem in which the training points are
generated online and/or the total number of training points is huge.
In these cases, not all the training points are “visible” to the com-
puter processor at once, therefore fast online algorithms are needed.
Existing popular methods for large-scale SVM include the stochas-
tic gradient descent (see [10, 11]) and the stochastic dual coordinate
ascent (see [10,11]) . Both of them apply to an unconstrained penal-
ized optimization problem, which involves a regularization parame-
ter λ. For real-time solution to the SVM problem, tuning λ can be
expensive.

In our experiment, we consider the constrained formulation of
SVM:

min
ϕ,b

1

2
∥ϕ∥2, s.t. yi(ϕ′xi + b) ≥ 1, ∀i = 1, 2, . . . ,m. (10)

This SVM formulation fits our general problem (1). By applying
ICAMP to this SVM problem, we are able to solve this SVM prob-
lem online by sampling one or several data points (xi, yi) at each
iteration. The implementation of ICAPM for the SVM problem (10)
is given by Algorithm 3.

5.2. Network Consensus Problem

Consider a network with m agents (nodes in the graph) [12, 13]
and some pair-wise links connecting the agents (edges in the graph).
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Algorithm 4: ICAPM for Network Consensus Problem

Choose arbitary initial points x(1), . . . , x(m) ∈ ℜn;
for k = 0, 1, 2, . . . do

(1) Local gradient descent for i = 1, 2, . . . ,m:

x
(i)

k+1/2 = x
(i)
k − 1

k + 1
∇̃fi(x

(i)
k ) ; (15)

(2) Sample M edges ei, i = 1, 2, . . . ,M ;
(3) For each sampled edge ei that connects nodes ai, bi,
take the average of x(ai) and x(bi):

x
(ai)
k+1 =

1

2M
((2M − 1)x

(ai)

k+1/2 + x
(bi)
k+1) ;

x
(bi)
k+1 =

1

2M
(x

(ai)

k+1/2 + (2M − 1)x
(bi)
k+1) ;

(16)

We want to solve the following decentralized network optimization
problem

min
x

m∑
i=1

fi(x), (13)

where every agent i only knows about its local fi. In order words,
we want to obtain a consensus optimal solution for problem (13) by
using a distributed procedure. The challenge is that we don’t have
a central server to enforce the consensus. Instead, we can leverage
the private communication channels among agents, i.e., the links or
edges between pairs of agents.

Motivated by the network connectivity, we rewrite (13) as:

min
x(1),x(2),...,x(m)

{
m∑
i=1

fi(x
(i))

}
, s.t. x(1) = x(2) = · · · = x(m),

(14)
where x(i) is the local copy of the solution at the i-th agent. Given
a network of nodes and edges, we obtain an optimization problem
in which the objective functions are defined on the nodes while the
constraints are defined on the edges. We may solve this problem
by using ICPM or ICAPM. When applying ICAMP, we may inter-
pret the stochastic gradient as agents individually making their local
updates, and we may interpret the random projection as neighboring
agents exchanging information. As long as the network is connected,
the ICAMP is guaranteed to converge to a consensus optimal solu-
tion. The methods considered in [12, 13] also share the same spirit,
while the proposed ICAPM is more general mathematically. The
implementation of ICAPM for problem (13) is given by Algorithm
4.

6. EXPERIMENT RESULTS

6.1. Experiment for SVM

We generated linear separable training points and labels randomly
(according to a Guassian distribution) with xi ∈ ℜ50 and m = 104.
Then we use Algorithm 3 to learn the optimal classifier. Here the
decision variables are ϕ and b, so we quantify the optimization error
by ∥xk − x∗∥2 := ∥ϕk − ϕ∗∥2 + |bk − b∗|2.

The simulation results are given by Figure 2. We clearly observe
that: ICAPM reduces the variance and keeps the iterates closer to the
optimal point with high probability. Using a constant is preferable
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Fig. 2. ICAPM and ICPM for SVM
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Fig. 3. ICAPM and ICPM for Network Consensus Problem

for the initial steps, while increasing Mk produces more accurate
solution for large k.

6.2. Experiment for Network Consensus Problem

Let the objective functions be fi(x) = ∥x − pi∥2, where pi is a
local knowledge only available to the i-th agent. In our experiment,
we generate pi randomly (Uniform Distribution in (0, 1)m), and let
m = 104, n = 50. The simulation results are illustrated in Figure 3,
where

∑m
i=1 ∥x

(i)
k − x∗∥2 is the optimization error per iteration. It

suggests that ICAMP is a decentralized algorithm that converges to
the consensus optimal solution.

7. CONCLUSION

We proposed a stochastic optimization method for problems involv-
ing a large number of constraints, namely the ICAPM. It involves
stochastic gradient descent and averaging over random projections.
We prove the almost convergence of ICAPM in Theorem 1. We ana-
lyze the stability and give a high-probability error bound for ICAPM
in Theorem 2 and Theorem 3, respectively. These results suggest
that we can control the precision/stability of ICAPM by adjusting
the number of sampling constraints per iteration.
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