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ABSTRACT
In sparse signal recovery of compressive sensing, the phase
transition determines the edge, which separates successful re-
covery and failed recovery. Moreover, the width of phase
transition determines the vague region, where sparse recov-
ery is achieved in a probabilistic manner. Earlier works on
phase transition analysis in either single measurement vector
(SMV) or multiple measurement vectors (MMVs) is too strict
or ideal to be satisfied in real world.

Recently, phase transition analysis based on conic geome-
try has been found to close the gap between theoretical analy-
sis and practical recovery result for SMV. In this paper, we ex-
plore a rigorous analysis on phase transition of MMVs. Such
an extension is not intuitive at all since we need to redefine
the null space and descent cone, and evaluate the statistical
dimension for ℓ2,1-norm. By presenting the necessary and
sufficient condition of successful recovery from MMVs, we
can have a boundary on the probability that the solution of a
MMVs recovery problem by convex programming is success-
ful or not. Our theoretical analysis is verified to accurately
predict the practical phase transition diagram of MMVs.

1. INTRODUCTION

Compressive sensing (CS) [1, 2, 3] of sparse signals in achiev-
ing simultaneous data acquisition and compression has been
extensively studied in the past few years. Let s ∈ RN be an
original signal to be sensed, let Φ ∈ RM×N represent a sam-
pling matrix, and let y ∈ RM be the measurement vector. We
say that s is k-sparse in the Ψ domain if it can represented as
s = Ψx, where x contains k non-zero entries. At the encoder,
random projection, defined as:

y = Φs = ΦΨx = Ax, (1)

is conducted on s via Φ to obtain the measurement vector y,
where A = ΦΨ. Under the circumstance, y is called a single
measurement vector (SMV). The measurement rate in CS is
defined as 0 < M

N ≤ 1. At the decoder, the original signal
s can be recovered to a certain extent by means of convex
optimization [4, 5] or greedy algorithms [6, 7].

An efficient convex optimization algorithm to solve sparse
signal recovery in CS is ℓ1-norm minimization, defined as:

(SL1) min ∥x∥1 s.t. y = Ax,

where ∥·∥1 is the ℓ1-norm.
In fact, the solution to problem (SL1) heavily depends on

the parameter set composed of N , M , and k. Thus, it is inter-
esting in both theoretical and practical aspects to explore the
sufficient conditions of successful sparse recovery.

1.1. Related Work
In the literature, only few researches target the goal of esti-
mating the phase transition of sparse signal recovery in the
context of compressive sensing. Donoho and Huo [8] show
that when sparsity k is less than 1

2

(
1 + µ−1

)
, then prob-

lem (SL1) will have a unique solution, where µ is the mu-
tual incoherence of A. Studer et al. [9] consider the model
z = Ax + By and find the sufficient condition of unique
solution depends on the mutual incoherence between A and
B. The aforementioned results, however, are too ideal to be
satisfied in real world.

An innovative idea is proposed in [10] in that the authors
analyze the problem (SL1) by conic geometry. They find that
the intersection between ℓ1-ball and the set of solutions of
y = Ax can be seen as the intersection between descent cone
of ℓ1-norm of x and null space of A. Moreover, the probabil-
ity of intersection can be predicted by kinematic formula [11],
and the probability is dependent on a novel summary param-
eter, called statistical dimension. The authors show that the
statistical dimension can predict the probability of successful
recovery of problem (SL1) almost perfectly.
1.2. Our Contributions
The prior researches discussed so far are almost for the sin-
gle measurement vector. In some cases (e.g. [12]), however,
the available information may contain multiple measurements
vectors (MMVs) [13, 14, 15, 16, 17]. In this paper, we theo-
retically analyze the phase transition behavior of sparse signal
recovery from MMVs via conic geometry and verify its prac-
ticability via simulations.

2. PROBLEM DEFINITION

2.1. Notations
For the matrix H , we denote its transpose by HT ; its ith row
by hi; its jth column by hj ; and the jth entry of ith row by
hij .supp(h) for a vector h is a set that collects the indices of
nonzero entries of h and supp(H) for a matrixH is equivalent
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to
∪

j supp(hj). ∥·∥p denotes the ℓp-norm and the Frobenius
norm of matrix H is denoted by ∥H∥F .

2.2. Phase Transition of Sparse Signal Recovery from
Multiple Measurement Vectors
The objective of this paper is to study the behavior of phase
transition of sparse signal recovery in convex optimization
problem of multiple measurement vectors (MMVs) in the
context of compressive sensing. Let S = [s1, s2, ..., sL] ∈
RN×L be the set of L (> 1) original signals to be sensed and
let the set of measurement vectors be Y = [y1, y2, ..., yL] ∈
RM×L, where yi = Φsi, i = 1, 2, ..., L, as in Eq. (1). We
also let si = Ψxi and denote X = [x1, x2, ..., xL] ∈ RN×L.
A matrix X is called K joint sparse if |supp(X)| = K. For
matrices, we define the ℓp,q-norms as:

∥X∥p,q = ∥(∥xi∥p)N×1∥q.

In contrast to SMV, given a dictionary A, sparse recovery
from MMVs can be efficiently solved via ℓ2,1-norm mini-
mization as:

(ML1) min ∥X∥2,1 s.t. Y = AX.

We call the problem (ML1) succeed if it has a unique optimal
solution. The sufficient condition of solving problem (ML1),
similar to that of SMV, is the key to evaluate successful recov-
ery. Nevertheless, only few researches target this problem.
In [14], the authors prove that when K < 1

2

(
1 + µ−1

)
, the

recovered result is the unique solution to problem (ML1)
where µ denotes the mutual incoherence of A. The goal of
this paper is to provide theoretical but practical bound of the
probability of successful recovery for problem (ML1).

3. PRELIMINARY–CONIC GEOMETRY
We briefly introduce how a convex function can be specified
in terms of conic geometry to make this paper self-contained.

Definition 3.1. (Descent cone [10])
The descent cone D(f, x) of a function f : RN → R at a
point x ∈ RN , defined as:

D(f, x) :=
∪
τ>0

{u ∈ RN : f(x+ τu) ≤ f(x)},

is the conical hull of the perturbations that do not increase f
near x.

Since cone is not a linear subspace, it doesn’t have the
rank to evaluate its “size” in RN×L. For this, a new measure
is required.

Definition 3.2. (Statistical Dimension [10])
The statistical dimension (S.D.) δ(C) of a closed convex cone
C ⊂ RN is defined as:

δ(C) := E
[∥∥∥∏(g, C)

∥∥∥2
2

]
,

where g ∈ RN is a standard normal vector, ∥·∥2 is ℓ2-norm,

and
∏

(·, C), denoting the Euclidean projection onto C, is

defined as:
∏

(x,C) := argmin{∥x− y∥2 : y ∈ C}.

In particular, if C is a subspace, δ(C) = dim(C). With
S.D., we can predict the probability of intersection between
two cones by the following theorem.

Theorem 3.3. (Approximate kinematic formula [10])
Fix a tolerance η ∈ (0, 1). Suppose that C1, C2 ⊂ RN are
closed convex cones, one of which is not a subspace. Draw
an orthogonal matrix Q ∈ RN×N uniformly at random. Then

δ(C1)+δ(C2) ≤ N−aη
√
N ⇒ P{C1∩QC2 = {0}} ≥ 1−η,

δ(C1)+δ(C2) ≥ N +aη
√
N ⇒ P{C1∩QC2 = {0}} ≤ η.

The quantity aη :=
√
8 log(4/η).

4. MAIN RESULTS

In this section, we characterize when problem (ML1) suc-
ceeds and derive the phase transition of success rate of it-
self inspired by the framework of conic geometry. In order
to satisfy the requirement of Theorem 3.3, A must be a Gaus-
sian random matrix. In compressive sensing, Φ and Ψ are
conventionally used to set as a Gaussian random matrix and
orthonormal basis, respectively, so that A = ΦΨ is also a
Gaussian random matrix [18].

In our method, we first define the matrix null space
null(A,L) of matrix A ∈ RM×N as:

null(A,L) := {E ∈ RN×L : AE = 0M×L}.
Second, the descent cone of ℓ2,1-norm D(∥·∥2,1 , X0) at the
point X0 is defined as:

D(∥·∥2,1, X0) :=
∪
τ>0

{U ∈ RN×L : ∥X0+τU∥2,1 ≤ ∥X0∥2,1}.

The necessary and sufficient condition of the success of prob-
lem (ML1) is described in the following.

Theorem 4.1. (Optimality condition for MMVs recovery)
The matrix X0 is the unique optimal solution to problem
(ML1) if and only if D(∥·∥2,1 , X0) ∩ null(A,L) = {0N×L}.

Proof. Assume X0 is the unique optimal solution to problem
(ML1). Given a matrix E ∈ D(∥·∥2,1 , X0) ∩ null(A,L),
we know that X0 + E is a feasible point of problem (ML1)
and ∥X0 + E∥2,1 ≤ ∥X0∥2,1, which implies that X0 + E
is an optimal solution to problem (ML1). According to the
uniqueness of optimal solution of problem (ML1), we have
E = 0, and thus D(∥·∥2,1 , X0) ∩ null(A,L) = {0N×L}.

Conversely, suppose D(∥·∥2,1 , X0) ∩ null(A,L) =
{0N×L}. Since we know that X0 is a feasible solution of
problem (ML1), for any matrix E ∈ null(A,L)\ {0N×L},
X0 +E is also feasible. If ∥X0 + E∥2,1 ≤ ∥X0∥2,1, then we
have E ∈ D(∥·∥2,1 , X0) ∩ null(A,L)\ {0N×L} = ∅, which
is impossible. Therefore

∥X0 + E∥2,1 > ∥X0∥2,1 for all E ∈ null(A,L)\ {0N×L} ,
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which means that X0 is the unique optimal solution to prob-
lem (ML1).

C1 and C2 in theorem 3.3 are replaced by D(∥ · ∥2,1, X0)
and null(A,L), respectively, to derive the following theorem.

Theorem 4.2. (Phase transitions in MMVs recovery)
Fix a tolerance η ∈ (0, 1). Let X0 ∈ RN×L be a fixed ma-
trix. Suppose A ∈ RM×N has independent standard normal
entries, and let Y = AX0. Then

M ≥ δ(D(∥·∥2,1,X0))

L
+

aη
√

NL

L
⇒ P ((ML1) succeeds) ≥ 1− η;

M ≤ δ(D(∥·∥2,1,X0))

L
− aη

√
NL

L
⇒ P ((ML1) succeeds) ≤ η,

where the quantity aη :=
√
8 log(4/η).

5. CALCULATING THE STATISTICAL DIMENSION

In Theorem 4.2, the calculation of δ(D(∥·∥2,1 , X0)) is the
key to realize theoretical results but is still an open prob-
lem. To compute the S.D. of descent cone of ℓ2,1-norm in
our method, we follow Amelunxen et al.’s theorem [10] be-
low that provides the upper bound of general S.D. of a cone.

Theorem 5.1. (Statistical dimension of a descent cone [10])
Let f : RN → R̄ be a proper convex function and let x ∈ RN .
Assume that the subdifferential ∂f(x) is nonempty, compact,
and does not contain the origin. Define the function

F (τ) := F (τ, ∂f(x)) = E
[
dist2 (g, τ · ∂f(x))

]
for τ ≥ 0

where g ∼ NORMAL(0, I). We have the upper bound

δ(D(f, x)) ≤ inf
τ≥0

F (τ) . (2)

Furthermore, the function F is strictly convex, continuous at
τ = 0, and differentiable for τ ≥ 0. It achieves its minimum
at a unique point.

A theorem stating the lower bound of S.D. is described as
follows.

Theorem 5.2. (Error bound for descent cone recipe [10])
Let f : RN → R̄ be a proper convex function, and fix a
nonzero point x. Then

inf
τ≥0

F (τ)− 2 sup{∥s∥2 : s ∈ ∂f(x)}
f( x

∥x∥2
)

≤ δ(D(f, x)),

where the function F is defined in Theorem 5.1.

However, the above norm f is, in fact, an ℓ2,1-norm in
our method. So we need the subdifferential of ℓ2,1-norm, as
mentioned in [19].

Lemma 5.3. (Subdifferential of ∥·∥2,1 [19])
(a) For any xi, ui ∈ RL, we have

ui ∈ ∂∥xi∥2 ⇔

{
ui = xi/∥xi∥2 if xi ̸= 0,

∥ui∥2 ≤ 1 if xi = 0.
(3)

(b) We have ∂∥X∥2,1 ̸= ∅ if and only if

U ∈ ∂∥X∥2,1 ⇔ ui ∈ ∂∥xi∥2, 1 ≤ i ≤ N,

where U =
[(
u1
)T
,
(
u2
)T
, ...,

(
uN
)T ]T ∈ RN×L.

According to Theorem 5.1, Theorem 5.2, and Lemma 5.3,
we can estimate the S.D. of descent cone of ℓ2,1-norm.

Theorem 5.4. (Statistical dimension of descent cone of ℓ2,1-
norm)
Let X be a matrix in RN×L with K nonzero rows. Then the
normalized S.D. of the descent cone of ℓ2,1-norm at the point
X satisfies the inequality

ψ

(
K

N

)
− 2√

KN
≤ δ(D(∥ · ∥2,1, X))

N
≤ ψ

(
K

N

)
. (4)

The function ψ is defined as

ψ(ρ) := inf
τ≥0

{R(τ)} , (5)

R(τ) = ρ(L+ τ2) + (1− ρ)
21−L/2

Γ(L/2)
T (τ), (6)

where T (τ) =

∫ ∞

τ

(S − τ)2SL−1e−S2/2dS and Γ(L/2) is

gamma function.

Proof. Without loss of generality, we may assume that the
sparse matrix X ∈ RN×L takes the form of

X =
[(
x1
)T
, . . . ,

(
xK
)T
, 0L×(N−K)

]T
where the first K rows of X are nonzero.

Since ∥·∥2,1 is a proper convex function, by replacing the
function f as ∥·∥2,1, Eq. (2) becomes

δ(D(∥·∥2,1 , X)) ≤ inf
τ≥0

E[dist2(G, τ · ∂∥X∥2,1)], (7)

where dist(S, T ) = ∥S − T ∥F . The matrix G ∈ RN×L has
independent standard normal entries, which can be written as

G =
[(
g1
)T
, . . . ,

(
gK
)T
,
(
gK+1

)T
, . . . ,

(
gN
)T ]T

=
[
GT

1 , G
T
2

]T
,

where G1 ∈ RK×L and G2 ∈ R(N−K)×L. By Eq. (3), the
distance from matrix G to τ · ∂∥X∥2,1 is

dist2(G, τ · ∂∥X∥2,1)

=

K∑
i=1

L∑
j=1

(
gij − τ ·

xij
∥xi∥2

)2

+

N∑
i=K+1

(
∥gi∥2 − τ

)2
+
,

where (a)+ = max(a, 0). Since the entries of G are indepen-
dent standard normal, ∥gi∥2 ∼ χL follow the chi distribution
with L degrees of freedom. After taking the expectation, we
have

E
(
dist2(G, τ · ∂∥X∥2,1)

)
= K(L+ τ2) + (N −K)

21−L/2

Γ(L/2)

∫ ∞

τ

(S − τ)2SL−1e−S2/2dS

= K(L+ τ2) + (N −K)
21−L/2

Γ(L/2)
T (τ).

Then Eq. (7) becomes
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δ(D(∥·∥2,1 , X))

N
≤ ψ

(
K

N

)
, (8)

where

ψ

(
K

N

)
:= inf

τ≥0

{
K

N
(L+ τ2) +

(
1− K

N

)
21−L/2

Γ(L/2)
T (τ)

}
.

On the other hand, we aim to approximate the lower
bound of S.D. of descent cone of ℓ2,1-norm . By the fact that
the descent cone of a point is affine invariant provided the
sign of such point is preserved, then we have

δ(D(∥·∥2,1 , X)) = δ(D(∥·∥2,1 , X̂)),

where x̂i = xi

∥xi∥2
for i = 1, 2, ...,K, and x̂j = 0 for j =

K + 1, ..., N .
By Theorem 5.2 and Eq. (2), we can see that the gap

between the upper and lower bounds of δ(D(∥·∥2,1 , X̂)) is

gap =

2 sup

{
∥U∥F : U ∈ ∂

∥∥∥X̂∥∥∥
2,1

}
∥∥∥X̂/∥X̂∥F

∥∥∥
2,1

. (9)

By Eq. (3), we have ∥U∥F ≤
√
N for every subgradient

U ∈ ∂∥X̂∥2,1. In addition,
∥∥∥X̂/∥X̂∥F

∥∥∥
2,1

=
√
K. Hence,

the gap in Eq. (9) can be derived as:

gap =
2
√
N√
K

and we complete the proof.

Note that the upper bound of normalize S.D. in Eq. (8) is
exactly the one in Theorem 5.1, and the infimum in Eq. (5)
is achieved for the unique positive τ that solves the stationary
equation R′(τ) = 0.

6. VERIFICATIONS

We verify our theoretical analysis about phase transition in
compressed sensing via ℓ2,1-norm minimization by simula-
tions, which were conducted using the CVX package [20]. In
our simulations, the signal dimension was fixed at N = 100
and both M and K ranged from 1 to N −1. The number L of
measurement vectors was selected as L = 2, 5, and 10. We
repeated the following verification procedure 100 times for
each set of parameters, composed of M , K, and L.

1. Construct a matrix X0 ∈ RN×L with K nonzero rows.
The locations of nonzero rows were selected at random,
where all the entries are nonzero and are either +1 or
−1 with equal probability.

2. Draw a standard normal matrix A ∈ RM×N and form
Y = AX0.

3. Solve problem (ML1) by CVX to obtain an optimal
point X∗.

4. Declare success if ∥X∗ −X0∥ ≤ 10−5.
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(d) Statistical Dimensions Comparison

Stat. dim.

50% success

 L=2

 L=5

 L=10

Compressed sensing with `2,1-norm minimization

Number of nonzero rows of X

Fig. 1. The empirical probability that problem (ML1) iden-
tifies a sparse matrix (a) X ∈ R100×2, (b) X ∈ R100×5, (c)
X ∈ R100×10, given random linear measurements Y = AX ,
(d) Comparison of statistical dimensions under L = 2 (dash
line), L = 5 (solid line), and L = 10 (dash-dot line).

In Theorem 5.4, we show that δ(D(∥·∥2,1), X0) depends
onN ,K, andL. In Figs. 1(a)-(c), we can observe that the the-
oretical curve (in yellow) is extremely close to success rate of
50% (in red), which implies that the derived phase transition
of sparse recovery from problem (ML1) meets practical re-
sults. Furthermore, we can also observe from Fig. 1(d) that
the larger L is, the smaller δ(D(∥·∥2,1), X0) and the width of
phase transition are. Such a phenomenon is reasonable be-
cause more measurement vectors will be helpful in recovery
of sparse signals.

In real applications,N andL are known/determined in ad-
vance, K is unknown, and M should be properly determined
to save measurement rates. According to Theorem 5.4, with
K fixed temporarily, we can determine the lower bound of
M , but withM fixed temporarily, we can determine the upper
bound of K. Thus, we can dynamically adjust the unknown
parameters based on real scenarios.

7. CONCLUSION

Since the phase transition analysis in sparse signal recovery of
compressive sensing is too strict or ideal to be satisfied in real
world, we present a new phase transition analysis based on
conic geometry to close the gap between theoretical analysis
and practical recovery result for MMVs.
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