
BI-ALTERNATING DIRECTION METHOD OF MULTIPLIERS
OVER GRAPHS

Guoqiang Zhang and Richard Heusdens

Group of Circuits and Systems (CAS)
Delft University of Technology

Delft, the Netherlands Email: {g.zhang-1,r.heusdens}@tudelft.nl

ABSTRACT

In this paper, we extend the bi-alternating direction method of mul-

tipliers (BiADMM) designed on a graph of two nodes to a graph of

multiple nodes. In particular, we optimize a sum of convex functions

defined over a general graph, where every edge carries a linear equal-

ity constraint. In designing the new algorithm, an augmented primal-

dual Lagrangian function is carefully constructed which naturally

captures the associated graph topology. We show that under both

the synchronous and asynchronous updating schemes, the extended

BiADMM has the convergence rate of O(1/K) (where K denotes

the iteration index) for general closed, proper and convex functions.

As an example, we apply the new algorithm for distributed averag-

ing. Experimental results show that the new algorithm remarkably

outperforms the state-of-the-art methods.

Index Terms— Distributed optimization, alternating direction

method of multipliers, bi-alternating direction of multipliers

1. INTRODUCTION

In this paper, we consider solving a decomposable optimization

problem defined over a graphic model G = (V, E):

min
x

∑

i∈V

fi(xi) s.t. Ai→jxi +Aj→ixj = cij ∀(i, j) ∈ E , (1)

where x = [xT
1 , . . . ,x|V|]

T , and for every i ∈ V , fi : R
ni →

R ∪ {∞} is a closed, proper and convex function. The above dis-

tributed optimization problem has drawn increasing attention due

to the demand for big-data processing and easy access to ubiqui-

tous computing units (e.g., a computer, a mobile phone or a senor

equipped with CPUs). The basic idea is to have a set of computing

units collaborate with each other in a distributed way to complete

a complex task. Popular applications include telecommunication

[1, 2], wireless sensor networks [3], cloud computing and machine

learning [4]. The research challenge is on the design of efficient and

robust distributed optimization algorithms for solving (1).

A majority of recent research have been focusing on a special-

ized form of the above problem (1), where the constraint on every

edge (i, j) ∈ E reduces to xi = xj . The above special form is com-

monly known as the consensus problem in the literature. Classic

methods include the dual-averaging algorithm [5], the subgradient

algorithm [6], the diffusion adaptation algorithm [7].

In the literature, there is not much progress in solving the general

problem (1). One algorithm that can be used for solving (1) is the

This work was supported by the COMMIT program, The Netherlands.

1

2 3

4

5
6

Fig. 1. Demonstration of problem (1), where every edge carries an

equality constraint.

alternating-direction method of multipliers (ADMM). In order to do

so, (1) is firstly reformulated as

min
x,z

f(x) + g(z) subject to Ax+Bz = c, (2)

where f(x) =
∑

i∈V fi(xi), g(z) = 0 and z is an introduced aux-

iliary variable. The graphic structure is implicitly embedded in the

two matrices (A,B) and the vector c. The reformulation essentially

converts the problem on a general graph with many nodes to a graph

with only two nodes (2), allowing the application of ADMM.

We note that the above approach of reformulating (1) into (2)

does not make full use of the graphic structure G = (V, E) carried

in (1). It is of great interest to design an optimization algorithm

for the problem (1) directly. By doing so, we might have a deep

understanding of distributed optimization over graphs.

Recently, in [8], we have proposed a new algorithm for (2) de-

fined over a graph of two nodes, which is referred to as the bi-

alternating direction method of multipliers (BiADMM). One advan-

tage of BiADMM is that the algorithm converges by following either

the synchronous or asynchronous updating scheme, as opposed to

ADMM which has to follow the Gaussian-Seidel procedure at each

iteration.

In this paper, we tackle the general problem (1) by extending

BiADMM designed on a graph of two nodes to a graph of multiple

nodes. Inspired by [8], we construct an augmented primal-dual La-

grangian function for (1) without introducing the auxiliary variable

z as in (2). The extended BiADMM solves (1) by iteratively ap-

proaching a saddle point of the constructed function. We show that

for both the synchronous and asynchronous updating schemes, the

new algorithm converges with the rate of O(1/K) regardless of the

graph topology. As an example, we apply the extended BiADMM to

distributed averaging. The new algorithm significantly outperforms

the state-of-the-art methods in terms of convergence speed.

3571978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

2. PROBLEM REFORMULATION

2.1. Problem assumption

Considering the problem (1), we let (cij ,Ai→j ,Aj→i) ∈
(Rnij ,Rnij×ni ,Rnij×nj) for every edge (i, j) ∈ E . We use

N (i) to denote the neighboring set of node i. Also we let the set

V = {1, 2, . . . ,m}. As a result, |V| = m. Finally, we denote

the set of all the directed edges in the graph as ~E . The Lagrangian

function associated with (1) can be constructed as

L(x, δ)=
∑

(i,j)∈E

δ
T
ij(cij−Ai→jxi−Aj→ixj)+

∑

i∈V

fi(xi), (3)

where δij is the Lagrangian multiplier (or the dual variable) for each

constraint Ai→jxi+Aj→ixj = cij in (1). The vector δ is obtained

by stacking the individual variables δij , (i, j) ∈ E . Therefore, x ∈

R

∑
i ni and δ ∈ R

∑
(i,j) nij . The Lagrangian function is convex in

x for fixed δ, and concave in δ for fixed x. Throughout the rest of

the paper, we will make the following (common) assumption:

Assumption 1. There exists a saddle point (x∗, δ∗) to the La-

grangian function L(x, δ) such that for all x ∈ R

∑
i ni and

δ ∈ R

∑
(i,j) nij we have

L(x∗, δ) ≤ L(x∗, δ∗) ≤ L(x, δ∗).

2.2. Augmented Primal-Dual Lagrangian Function

In this subsection, we build an augmented primal-dual Lagrangian

function by using {fi|i ∈ V} and their conjugate functions {f∗
i |i ∈

V} (see [9] for the definition). We show that the problem (1) can

be alternatively solved by finding the saddle point of the newly con-

structed function.

Before presenting the new function, we firstly introduce a set

of variables and notations. In particular, we introduce two variables

λi|j ∈ R
nij and λj|i ∈ R

nij for every edge (i, j) ∈ E . The sub-

script i|j indicates that the variable λi|j is owned by node i and re-

lated to neighboring node j. We use λi to denote the vector obtained

by vertically concatenating all λi|j , j ∈ N (i). Therefore, every

node i owns two variables xi and λi. We let AT
i denote the matrix

obtained by horizontally concatenating all AT
i→j , j ∈ N (i). The

notation M � 0 (or M ≻ 0) indicates that M is a positive semi-

definite matrix (or a positive definite matrix). Suppose M � 0, we

let ‖y‖2M = yTMy, which generalizes the l2 norm.

Inspired by [8], we construct an augmented primal-dual La-

grangian function as

LP (x,λ) =
∑

i∈V

[

fi(xi)−
∑

j∈N (i)

λ
T
j|i(Ai→jxi − cij)

− f∗
i (A

T
i λi)

]

+hP (x,λ), (4)

where λ = [λT
1 ,λ

T
2 , . . . ,λ

T
m]T and

A
T
i λi =

∑

j∈N (i)

A
T
i→jλi|j i ∈ V

hP(x,λ) =
∑

(i,j)∈E

(1

2
‖Ai→jxi +Aj→ixj + cij‖

2
P p,ij

−
1

2

∥

∥λi|j − λj|i

∥

∥

2

P d,ij

)

, (5)

where P is a set of positive definite matrices defined as

P = {P p,ij ≻ 0,P d,ij ≻ 0|(i, j) ∈ E} .

For every edge (i, j) ∈ E , λi|j and λj|i essentially substitute the

role of δij as in (3). It is not difficult to show that LP is convex in x

for fixed λ and concave in λ for fixed x.

Next we establish the relation between the original problem (1)

and the constructed function (4):

Theorem 1 (Saddle point theorem). If x∗ solves the original prob-

lem (1), there exists λ∗ such that (x∗,λ∗) is a saddle point of

LP(x,λ). Conversely, if (x∗,λ∗) is a saddle point of LP(x,λ),
then x∗ solves the original problem.

The proof for the above theorem is similar to the one in [8] for a

graph of two nodes. In the rest of the paper, we consider solving the

following min-max problem

(x∗,λ∗) = argmin
x

max
λ

LP (x,λ). (6)

We will explain in next section how to iteratively approach the saddle

point (x∗,λ∗) in a distributed manner.

3. BI-ALTERNATING DIRECTION METHOD OF

MULTIPLIERS

In this section, we present BiADMM to iteratively find a saddle point

of LP . We propose both the synchronous and asynchronous up-

dating schemes for BiADMM. Finally, we consider simplifying the

computation of BiADMM per iteration.

3.1. Synchronous updating scheme

The synchronous scheme refers to the operation that at each itera-

tion, all the variables receives their new estimates by using the most

recent information from their neighbors. Suppose (x̂k, λ̂
k
) is the

estimate obtained from the kth iteration, k ≥ 0. The new estimate

(x̂k+1
i , λ̂

k+1

i) for every i ∈ V is computed as

(

x̂
k+1
i , λ̂

k+1

i

)

=argmin
xi

max
λi

LP

([

. . . , x̂k,T
i−1,x

T
i , x̂

k,T
i+1, . . .

]T

,

[

. . . ,λ̂
k,T

i−1,λ
T
i ,λ̂

k,T

i+1, . . .
]T)

i ∈ V. (7)

By inserting the expression (4) for LP(x,λ) into (7), the updating

expression can be simplified as

x̂
k+1
i =argmin

xi

[

∑

j∈N (i)

1

2

∥

∥

∥
Ai→jxi +Aj→ix̂

k
j − cij

∥

∥

∥

2

P p,ij

−x
T
i

(

∑

j∈N(i)

A
T
i→jλ̂

k

j|i

)

+fi(xi)

]

i ∈ V (8)

λ̂
k+1

i =argmin
λi

[

∑

j∈N (i)

(

1

2

∥

∥

∥
λi|j − λ̂

k

j|i

∥

∥

∥

2

P d,ij

+λ
T
i|jAj→ix̂

k
j

−λ
T
i|jcij

)

+f∗
i (A

T
i λi)

]

i ∈ V. (9)

(8)-(9) suggests that the computation of x̂k+1
i and λ̂

k+1

i can be car-

ried out on node i separately. This property is due to the fact that

xi and λi are not directly related in LP(x,λ), thus simplifying the

computational procedure.

3.2. Asynchronous updating scheme

The asynchronous scheme refers to the operation that at each itera-

tion, only the variables associated with one node update their esti-

mates while all other variables keep their estimates fixed. Suppose

3572

at iteration k, node i is activated in the graph. (x̂k+1, λ̂
k+1

) can be

obtained as

(

x̂
k+1
i , λ̂

k+1

i

)

=argmin
xi

max
λi

LP

([

. . .,x̂k,T
i−1,x

T
i , x̂

k,T
i+1, . . .

]T

,

[

. . .,λ̂
k,T

i−1,λ
T
i ,λ̂

k,T

i+1,. . .
]T)

(10)

(

x̂
k+1
j , λ̂

k+1

j

)

=
(

x̂
k
j , λ̂

k

j

)

j ∈ V, j 6= i, (11)

where the estimates related with j ∈ V, j 6= i, remain fixed.

In practice, one can either randomly choose a node from the

graph or follow a predefined order of the nodes for parameter-update.

We assume that given enough time, every node will be activated for

parameter-updating. To speed up convergence, the frequencies of

every node being activated should be roughly balanced.

3.3. Reducing computational complexities

We note from Subsection 3.1 and 3.2 that for both the synchronous

and asynchronous schemes, each activated node i has to perform two

minimizations: one for the primal variable xi and the other one for

the dual variable λi. In this subsection, we identify a condition under

which the two minimizations can be reduced to one minimization,

thus reducing the computational complexities.

Proposition 1. Consider computing (x̂k+1
i , λ̂

k+1

i) for node i by fol-

lowing either (7) or (10). If the matrix P d,ij for every neighbor

j ∈ N (i) is chosen to be P d,ij = P−1
p,ij , then for every j ∈ N (i),

there is

λ̂
k+1

i|j = λ̂
k

j|i +P p,ij(cij −Aj→ix̂
k
j −Ai→jx̂

k+1
i). (12)

4. CONVERGENCE ANALYSIS

In this section, we show that BiADMM has a convergence rate

O(K−1) under either the synchronous or asynchronous scheme.

4.1. Preliminary

In order to analyze the algorithm convergence, we first have to select

the parameter set P properly. We impose a condition on each pair of

matrices (P p,ij ≻ 0,P d,ij ≻ 0), (i, j) ∈ E , in LP :

Condition 1. In the function LP , each pair of matri-

ces (P p,ij ,P d,ij) can be represented in terms of a triplet

(P b,ij ,∆P p,ij ,∆P d,ij) as follows:

P p,ij = P b,ij +∆P p,ij (i, j) ∈ E (13)

P d,ij = P
−1
b,ij +∆P d,ij (i, j) ∈ E , (14)

where P b,ij ≻ 0, ∆P p,ij � 0 and ∆P d,ij � 0.

(13)-(14) implies that P p,ij and P d,ij can not be chosen arbi-

trarily for our convergence analysis. If P p,ij is small, then P d,ij

has to be chosen big enough to make (13)-(14) hold, and vice versa.

One special setup for (P p,ij ,P d,ij) is to let P d,ij = P−1
p,ij .

Correspondingly, the triplet in (13)-(14) takes a unique form:

(P b,ij ,∆P p,ij ,∆P d,ij) = (P p,ij ,0,0).
Also in order to perform the convergence analysis, we have to

define a new objective function

p(x,λ)=
∑

i∈V

[

fi(xi) + f∗
i (A

T
i λi)

]

−
∑

(i,j)∈E

c
T
ij

(λi|j + λj|i)

2
.

The function p(x,λ) at a saddle point (x∗,λ∗) of LP equals to

zero, i.e., p(x∗,λ∗) = 0.

4.2. Synchronous updating scheme

The convergence result for the synchronous BiADMM is as follows:

Theorem 2. Let the synchronous BiADMM runs for K iterations by

following (7). Let (x̄K , λ̄
K
) = (1

K

∑K

k=1 x̂
k, 1

K

∑K

k=1 λ̂
k
). If the

set P is chosen by following (13)-(14), there is

0 ≤
∑

i∈V

∑

j∈N (i)

[

(λ̄
K
i|j−λ

∗
i|j)

T
(

Aj→ix̄
K
j −

cij

2

)

−(x̄K
i −x

∗
i)

T

·AT
i→jλ̄

K
j|i

]

+p(x̄K , λ̄
K
) ≤ O(K−1) (15)

and for every directed edge [i, j] ∈ ~E

lim
K→∞

[

P
1
2
b,ij(Ai→jx̂

K
i +Aj→ix̂

K−1
j − cij)

+P
− 1

2
b,ij(λ̂

K

i|j − λ̂
K−1

j|i)
]

= 0 (16)

lim
K→∞

∆P
1
2
p,ij(cij −Ai→jx̂

K
i −Aj→ix̂

K−1
j) = 0 (17)

lim
K→∞

∆P
1
2
d,ij(λ̂

K

i|j − λ̂
K−1

j|i) = 0, (18)

where P
1
2
b,ij ≻ 0 and P b,ij = P

1
2
b,ijP

1
2
b,ij . ∆P

1
2
p,ij and ∆P

1
2
d,ij

are defined in a similar manner for every edge (i, j) ∈ E .

The proof for the above theorem is inspired by the one in [8].

We have mainly used the variational inequalities (VIs) in the proof.

4.3. Asynchronous updating scheme

In this subsection, we characterize the convergence rate of the asyn-

chronous BiADMM. In order to facilitate the analysis, we consider

a predefined node-activation strategy (no randomness is involved).

Without loss of generality, we suppose at each iteration k, the

node i = mod(k,m) + 1 is activated for parameter update, where

mod(·, ·) stands for the modulus operation and m = |V|. Then

naturally, after a segment of m consecutive iterations, all the nodes

will be activated sequentially, one node at each iteration.

To be able to derive the convergence rate, we consider segments

of iterations, i.e., k ∈ {lm, lm+1, . . . (l+1)m− 1}, where l ≥ 0.

Each segment l consists of m iterations. By applying the mapping

i = mod(k,m) + 1, it is immediate that k = ml activates node 1

and k = (l+1)m−1 activates node m. We then have the following

convergence result:

Theorem 3. Let the asynchronous BiADMM runs for K segments

of m iterations. That is from k = 0 until k = (K − 1)m − 1. Let

(x̌K , λ̌
K
) = (1

K

∑K

l=1 x̂
lm, 1

K

∑K

l=1 λ̂
lm

). If the set P is chosen

by following (13)-(14), there is

0≤
∑

i∈V

∑

j∈N (i)

[(

λ̌
K

i|j−λ
∗
i|j

)T(

Aj→ix̌
K
j −

cij

2

)

−
(

x̌
K
i −x

∗
i

)T

·AT
i→jλ̌

K

j|i

]

+p
(

x̌
K , λ̌

K
)

≤ O(K−1), (19)

and for every (u, v) ∈ E where u < v

lim
K→∞

[

P
1
2
b,uv(Au→vx̂

Km
u +Av→ux̂

Km
v − cuv)

−P
− 1

2
b,uv(λ̂

Km

u|v − λ̂
Km

v|u)
]

= 0 (20)

3573

lim
K→∞

[

P
1
2
b,uv(Au→vx̂

Km
u +Av→ux̂

(K−1)m
v − cuv)

+ P
− 1

2
b,uv(λ̂

Km

u|v − λ̂
(K−1)m

v|u)
]

= 0 (21)

lim
K→∞

∆P
1
2
p,uv

[

Au→vx̂
Km
u +Av→ux̂

(K−1)m
v −cuv

]

=0 (22)

lim
K→∞

∆P
1
2
p,uv

[

Au→vx̂
Km
u +Av→ux̂

Km
v −cuv

]

= 0 (23)

lim
K→∞

∆P
1
2
d,uv

[

λ̂
Km

u|v −λ̂
(K−1)m

v|u

]

= 0 (24)

lim
K→∞

∆P
1
2
d,uv

[

λ̂
Km

u|v −λ̂
Km

v|u

]

= 0. (25)

5. APPLICATION TO DISTRIBUTED AVERAGING

In this section, we consider applying BiADMM to distributed av-

eraging. Distributed averaging is one of the basic operations for

advanced distributed signal processing. For instance, in [10], dis-

tributed averaging has been applied successfully for distributed

speech enhancement. Since the pioneering work by Boyd et al. [3],

many algorithms have been proposed for distributed averaging. See

[11] for a thorough overview of the developed algorithms.

5.1. Problem formulation and algorithm setup

Suppose every node i in a graph G = (V, E) carries a scalar

value, denoted as ti. The problem is to compute the average value

tave = 1
m

∑

i∈V ti iteratively only through message-passing be-

tween neighboring nodes in the graph. The above averaging problem

can be formulated as a quadratic optimization over the graph as

min
{xi}

∑

i∈V

1

2
(xi − ti)

2
s.t. xi − xj = 0 ∀(i, j) ∈ E . (26)

One can easily show that the optimal solution is x∗
1 = . . . = x∗

m =
tave. The above problem falls within the general formulation (1).

Before applying BiADMM to solve (26), we first configure the

the set P in LP . For distributed averaging, all the matrices in P be-

come scalars. For the purpose of simplicity, we let P p,ij = P d,ij =
1 for every edge (i, j) ∈ E .

5.2. Experimental results

In the experiment, the tested graph was a 10 × 10 two-dimensional

grid (corresponding to m = |V| = 100), implying that each node

may have two, three or four neighbors. The mean squared error

(MSE) 1
m
‖x̂ − tave1‖

2
2 was taken as the performance measure-

ment. For comparison, besides BiADMM, we also implemented the

broadcast-based algorithm in [12] (referred to as broadcast), the ran-

domized gossip algorithm in [3] (referred to as gossip) and ADMM.

Both broadcast and gossip algorithms only work under the asyn-

chronous updating scheme. While broadcast algorithm randomly

activates one node per iteration, gossip algorithm randomly activates

one edge per iteration for parameter-updating.

In order to implement ADMM, we first reformulate (26) into (2).

We then apply ADMM to optimize an augmented Lagrangian func-

tion constructed from (2), where at each iteration the estimates for

x, z and the Lagrangian multiplier were updated via a Gauss-Seidel

procedure (see [13]). We refer to the above implementation as the

synchronous ADMM. Recently in [14], the authors proposed to up-

date only a few components of x, z and the Lagrangian multiplier

per iteration. Specifically, in [14], only one edge in the graph is ac-

tivated per iteration and the estimates of its associated variables are

updated accordingly. We refer to the alternative implementation in

0 500 1000 1500 2000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

one-node BiADMM

two-node BiADMM

ADMM

broadcast

gossip

0 20 40 60 80 100
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

BiADMM

ADMM

iteration number iteration number

M
S

E

M
S

E

(a): asynchronous (b): synchronous

Fig. 2. Experimental comparison.

[14] as the asynchronous ADMM. The asynchronous ADMM is sim-

ilar to the gossip algorithm in the sense that both algorithms activates

one edge per iteration.

We note that the asynchronous ADMM essentially activates two

neighboring nodes (or equivalently one edge) per iteration. To make

a fair comparison between BiADMM and ADMM, we implemented

two versions of BiADMM for the asynchronous scheme. The first

version follows Subsection 3.2 where at each iteration only one node

is activated, referred to as one-node BiADMM. The second version

of BiADMM activates two neighboring nodes per iteration, referred

to as two-node BiADMM.

In the experiment, the gossip and broadcast algorithms were ini-

tialized according to [3] and [12], respectively. The initial estimates

of {xi} for BiADMM and ADMM were set to {x̂0
i = ti} whiles all

the others were set to zeros. Finally, in ADMM, the scalar parameter

in the augmented Lagrangian function was set to 1 to be consistent

with the configuration of BiADMM.

The performance of the algorithms is displayed in Fig. 2, where

subplot (a) and (b) are for the asynchronous and synchronous

schemes, respectively. We first focus on subplot (a) for the asyn-

chronous scheme. Each curve in the subplot was obtained by

averaging over 100 simulations to mitigate the effect of randomness

introduced in node or edge-activation. It is seen that the two-node

BiADMM converges the fastest among all the algorithms. After 700

iterations, the one-node BiADMM outperforms ADMM, gossip and

broadcast algorithms. Conversely, ADMM converges relatively fast

at the beginning. As the iteration increases, the algorithm gradually

converges slowly as compared to other algorithms. The above re-

sults suggest that BiADMM leads to fast information-spread over

the graph than the other three algorithms.

Fig. 2 (b) demonstrates the performance of BiADMM and

ADMM for the synchronous scheme. Both algorithms appear to

have linear convergence rates. This may because the objective

functions in (26) are strongly convex and have gradients which

are Lipschitz continuous. Again BiADMM converges significantly

faster than ADMM, which might be due to the fact that BiADMM

avoids the auxiliary variable z used in ADMM.

6. CONCLUSION

In this paper, we have extended BiADMM for optimization over a

graph of multiple nodes. The augmented primal-dual Lagrangian

function is carefully designed to be in line with the graph topology.

Theoretically, we have shown that under both synchronous and asyn-

chronous updating schemes, BiADMM possesses a convergence rate

of O(1/K) for general closed, proper and convex functions defined

over the graph. As an example, we have applied BiADMM for dis-

tributed averaging, which shows that BiADMM significantly outper-

forms the state-of-art methods.

3574

7. REFERENCES

[1] T. Richardson and R. Urbanke, Modern Coding Theory, Cam-

bridge University Press, 2008.

[2] G. Zhang, R. Heusdens, and W. Bastiaan Kleijn, “Large Scale

LP Decoding with Low Complexity,” IEEE Communications

Letters, vol. 17, no. 11, pp. 2152–2155, 2013.

[3] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized

Gossip Algorithms,” IEEE Trans. Information Theory, vol. 52,

no. 6, pp. 2508–2530, 2006.

[4] D. Sontag, A. Globerson, and T. Jaakkola, “Introduction to

Dual Decomposition for Inference,” in Optimization for Ma-

chine Learning. 2011, MIT Press.

[5] J. Duchi, A. Agarwal, and M. J. Wainwright, “Dual Averag-

ing for Distributed Optimization: Convergence Analysis and

Network Scaling,” in IEEE Trans. Automatic Control, 2012,

vol. 57, pp. 592–606.

[6] A. Nedić and A. Ozdaglar, “Distributed Subgradient Methods

for Multi-agent Optimization,” IEEE Transactions on Auto-

matic Control, 2008.

[7] J. Chen and A.H. Sayed, “Diffusion Adaptation Strategies for

Distributed Optimization and Learning Over Networks,” IEEE

Trans. Signal Processing, vol. 60, no. 8, pp. 4289–4305, 2012.

[8] G. Zhang, R. Heusdens, and W. Bastiaan Kleijn, “On the Con-

vergence Rate of the Bi-Alternating Direction Method of Mul-

tipliers,” in Proc. of IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP), May 2014, pp.

3897–3901.

[9] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-

bridge University Press, 2004.

[10] Y. Zeng and R. C. Hendriks, “Distributed Delay and Sum

Beamformer for Speech Enhancement via Randomized Gos-

sip,” IEEE/ACM Trans. Audio, Speech and Language Process-

ing, vol. 22, no. 1, pp. 260–273, 2014.

[11] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and

A. Scaglione, “Gossip Algorithms for Distributed Signal Pro-

cessing,” Proceedings of the IEEE, vol. 98, no. 11, pp. 1847–

1864, 2010.

[12] F. Iutzeler, P. Ciblat, and W. Hachem, “Analysis of Sum-

Weight-Like Algorithms for Averaging in Wireless Sensor Net-

works,” IEEE Trans. Signal Processing, vol. 61, no. 11, pp.

2802–2814, 2013.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-

tributed Optimization and Statistical Learning via the Alter-

nating Direction Method of Multipliers,” In Foundations and

Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[14] E. Wei and A. Ozdaglar, “On the O(1/k) convergence of asyn-

chronous distributed alternating direction method of multipli-

ers,” arXiv:1307.8254v1 [math.OC], 2013.

3575

